

Course Overview

MIE1666: Machine Learning for Mathematical Optimization

Can algorithms "learn" to design algorithms?

Machine Learning

Can algorithms "learn" to design algorithms?

Machine Learning

Can algorithms "learn" to design algorithms?

Discrete Optimization

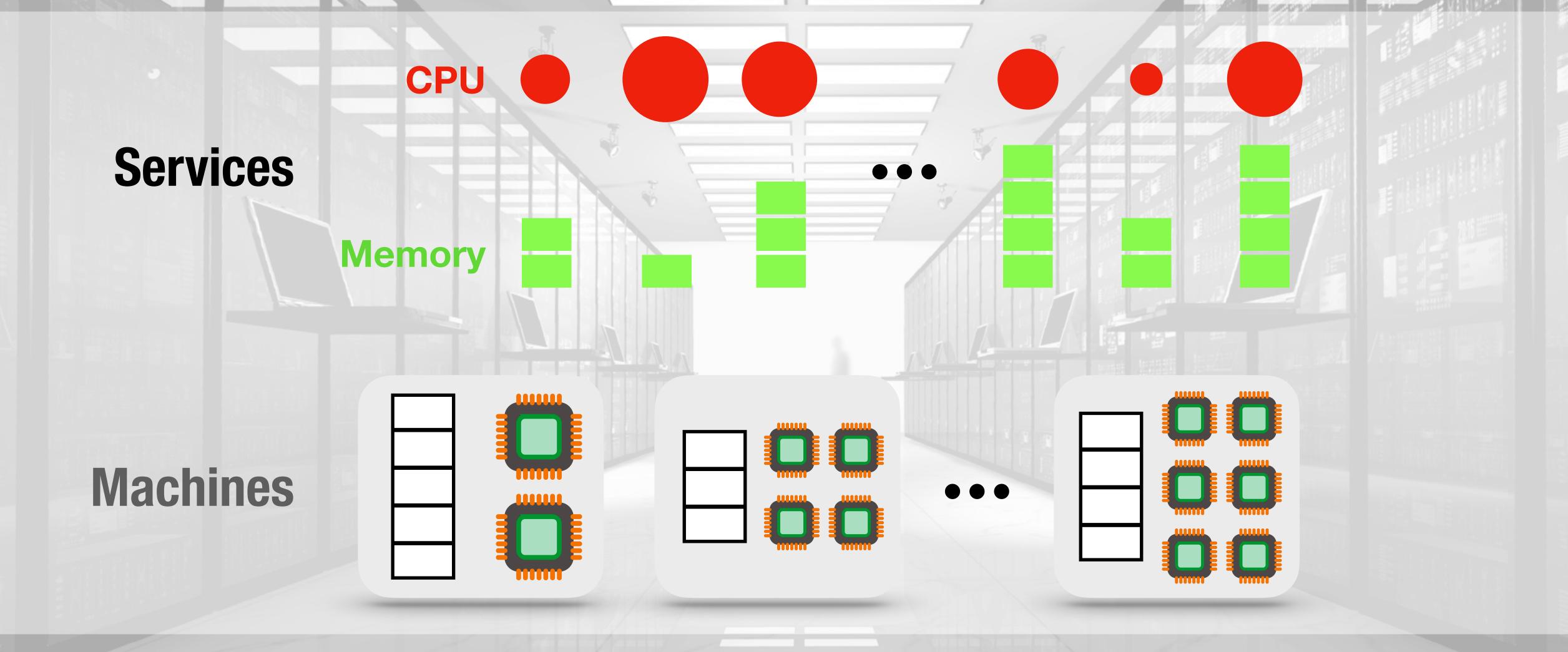
Data Center Resource Management Photo from: https://www.reit.com/what-reit/reit-sectors/data-center-reits

Data Center Resource Management

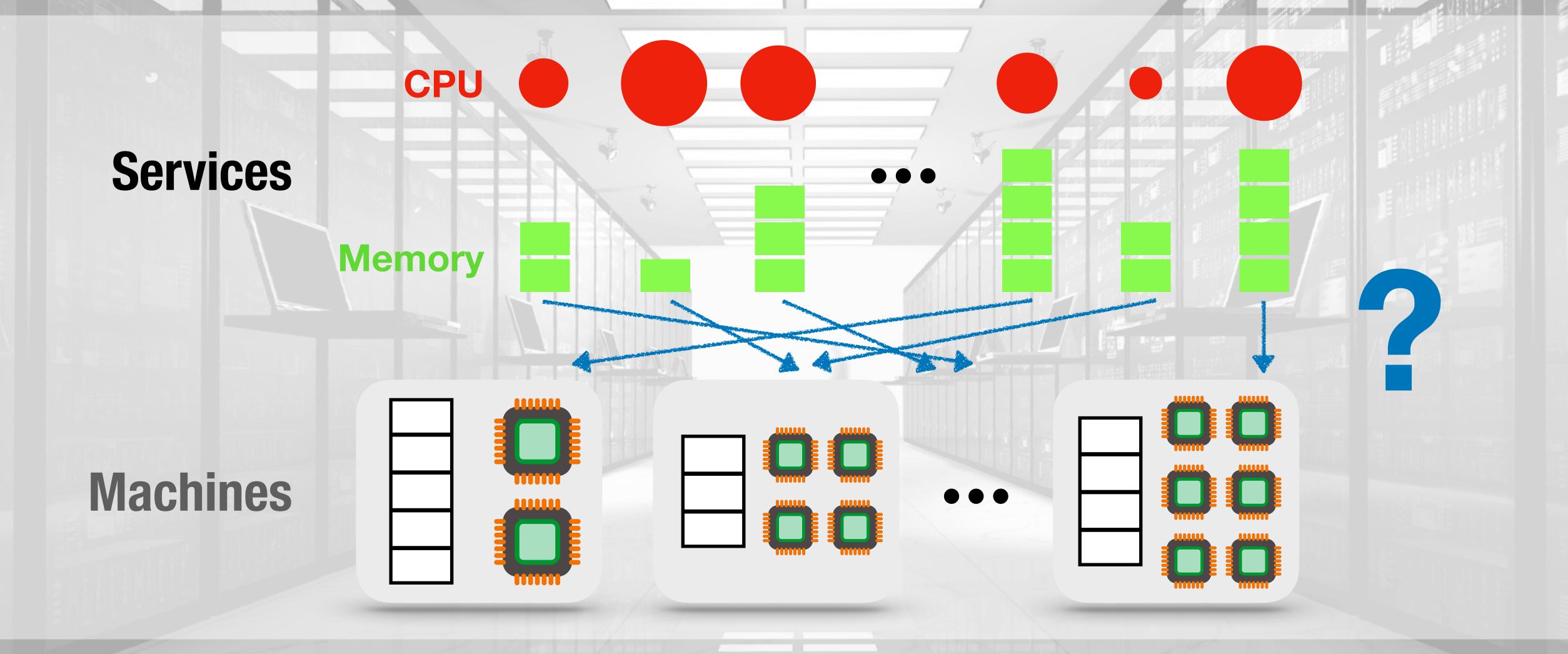
Services •••

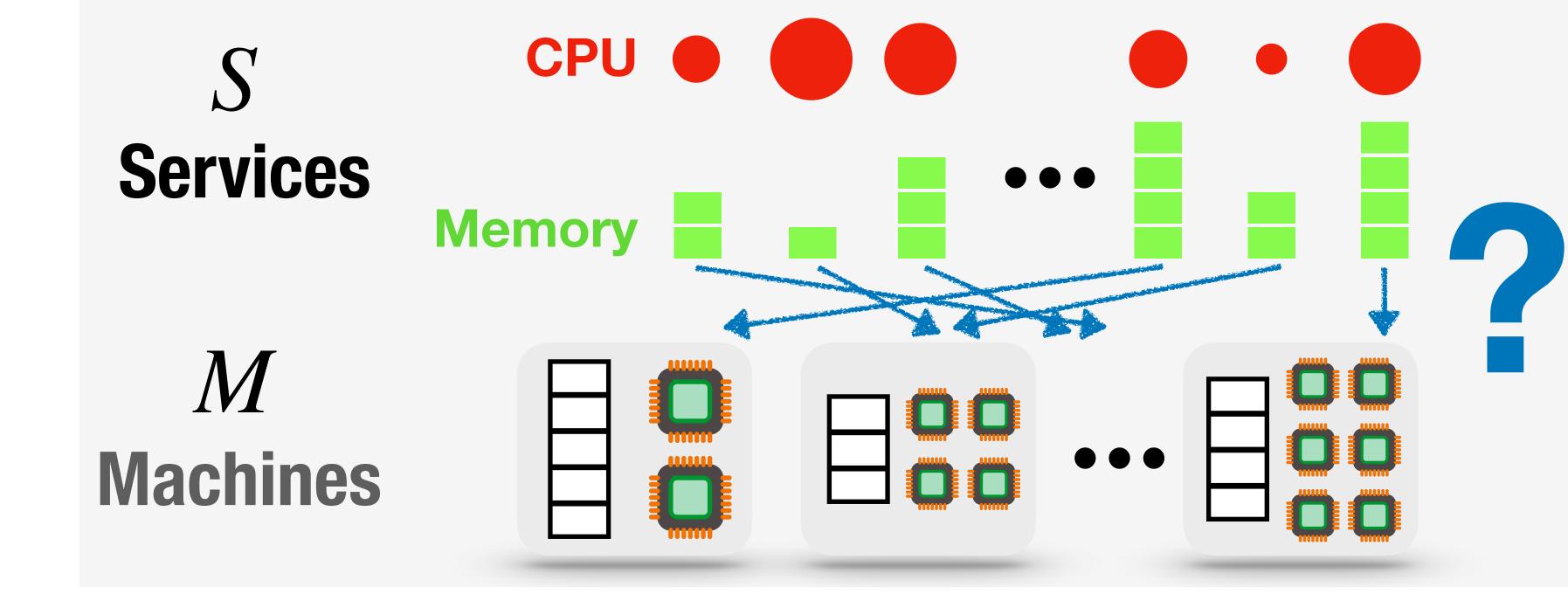
Memory

Data Center Resource Management

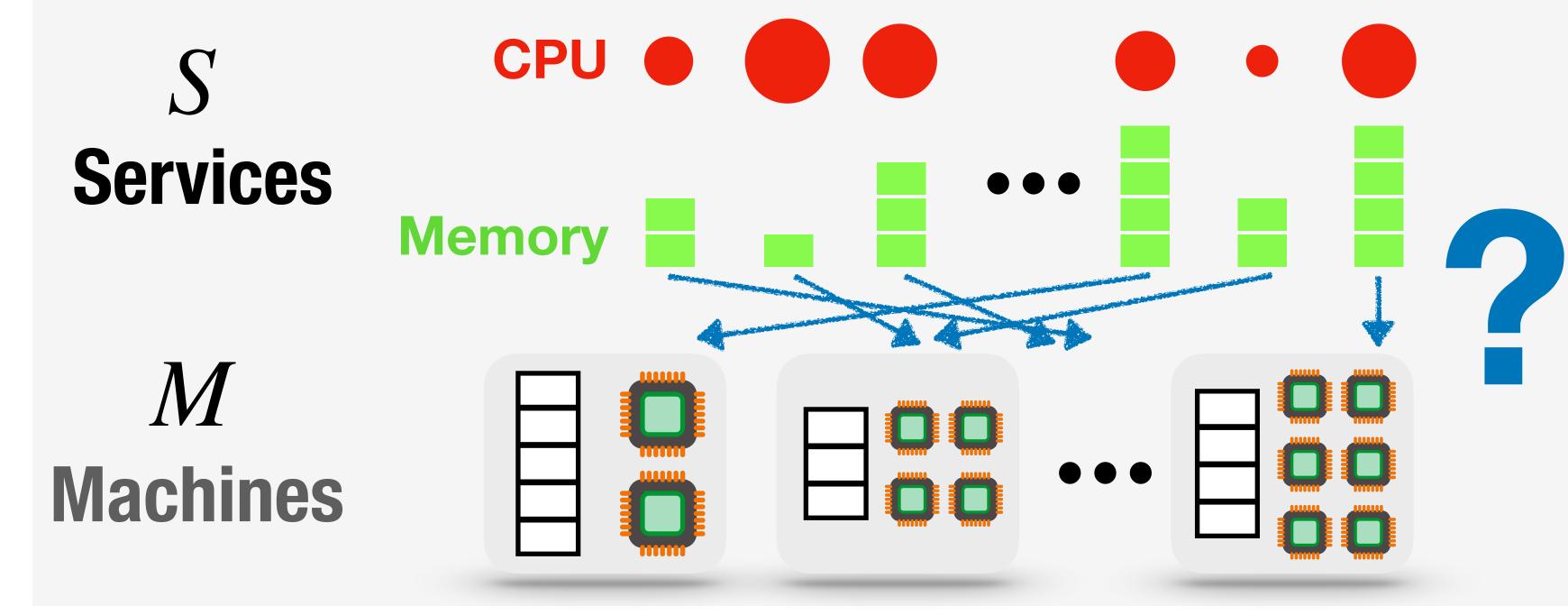


Data Center Resource Management



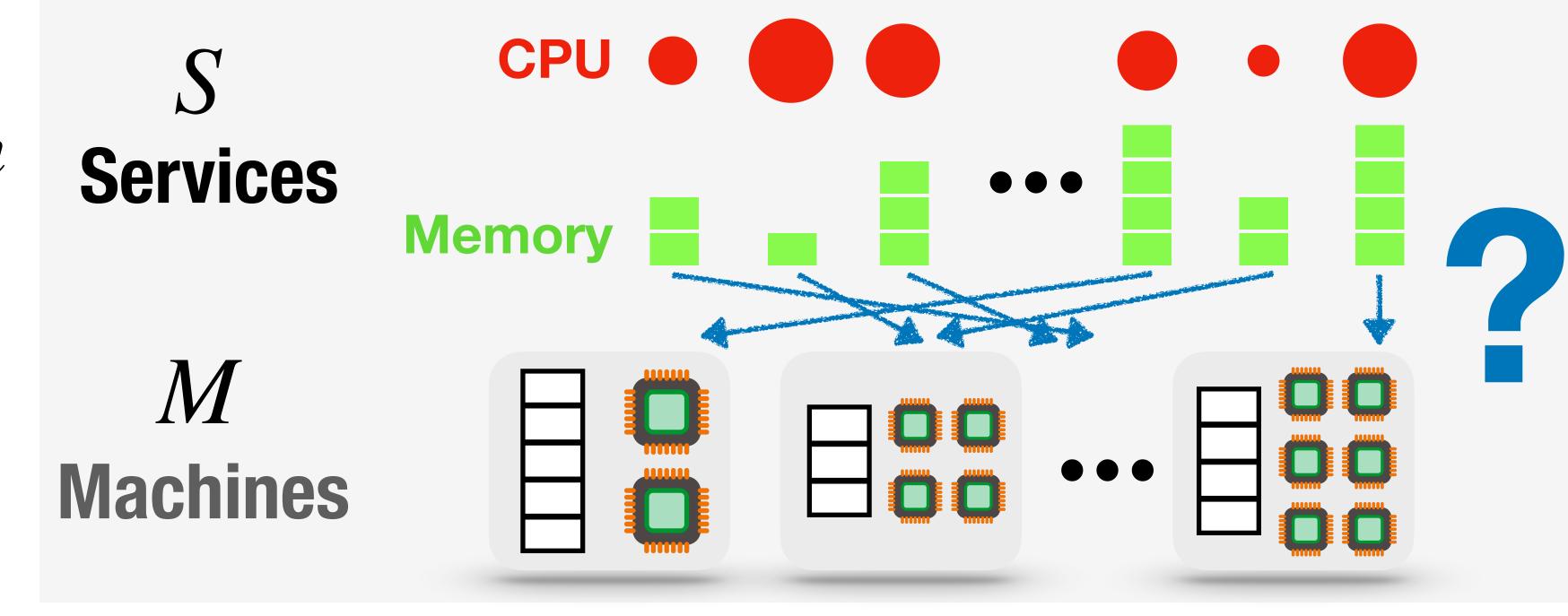


 $y_m = 1$ if machine m is used $x_{s,m} = 1$ if service s runs on m

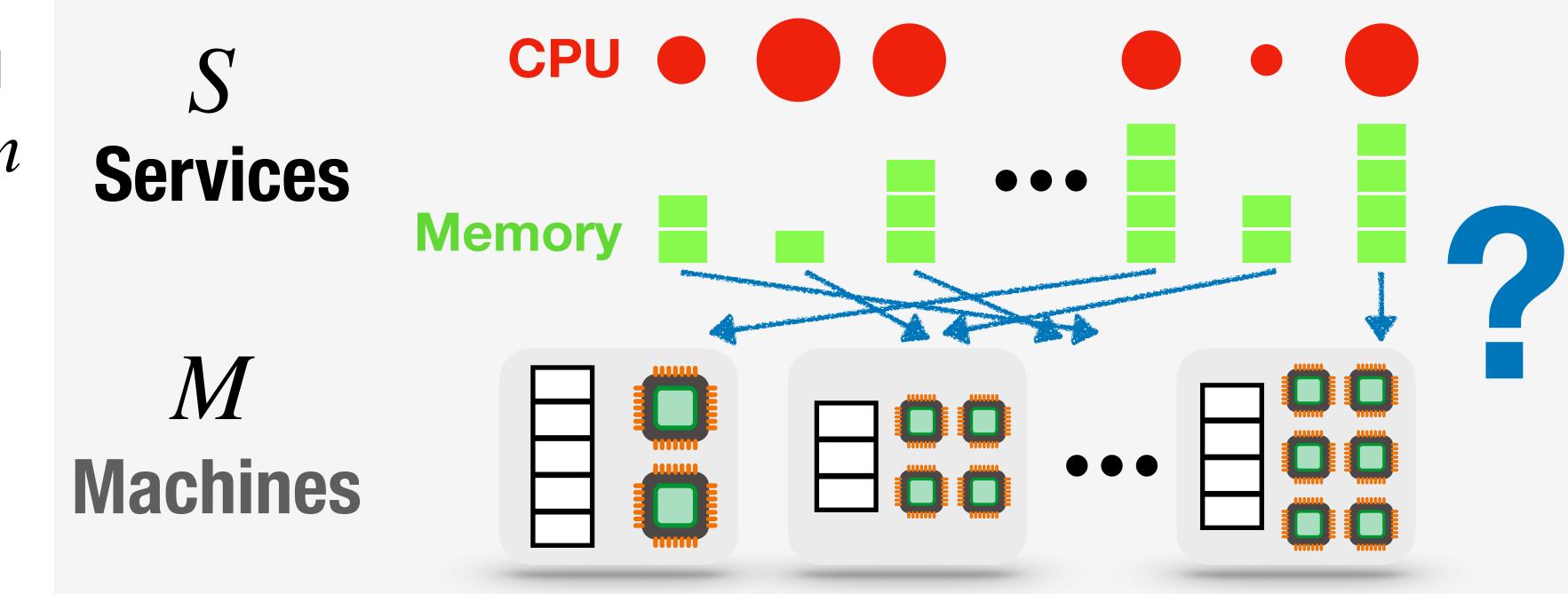


 $y_m = 1$ if machine m is used $x_{s,m} = 1$ if service s runs on m

 $x \in \{0,1\}^{S \times M}, y \in \{0,1\}^{M}$



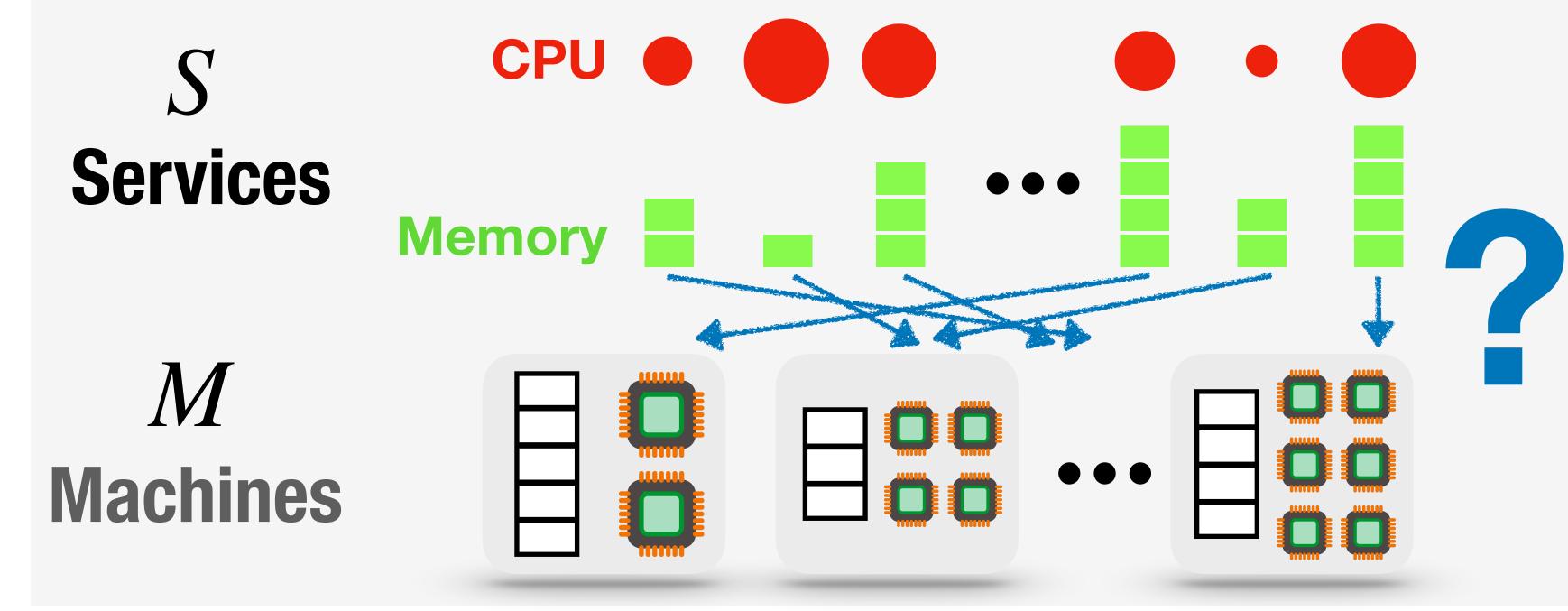
$$y_m = 1$$
 if machine m is used $x_{s,m} = 1$ if service s runs on m $x \in \{0,1\}^{S \times M}, y \in \{0,1\}^{M}$ minimize $\sum_{m=1}^{M} y_m$



$$y_m = 1$$
 if machine m is used $x_{s,m} = 1$ if service s runs on m

$$x \in \{0,1\}^{S \times M}, y \in \{0,1\}^{M}$$

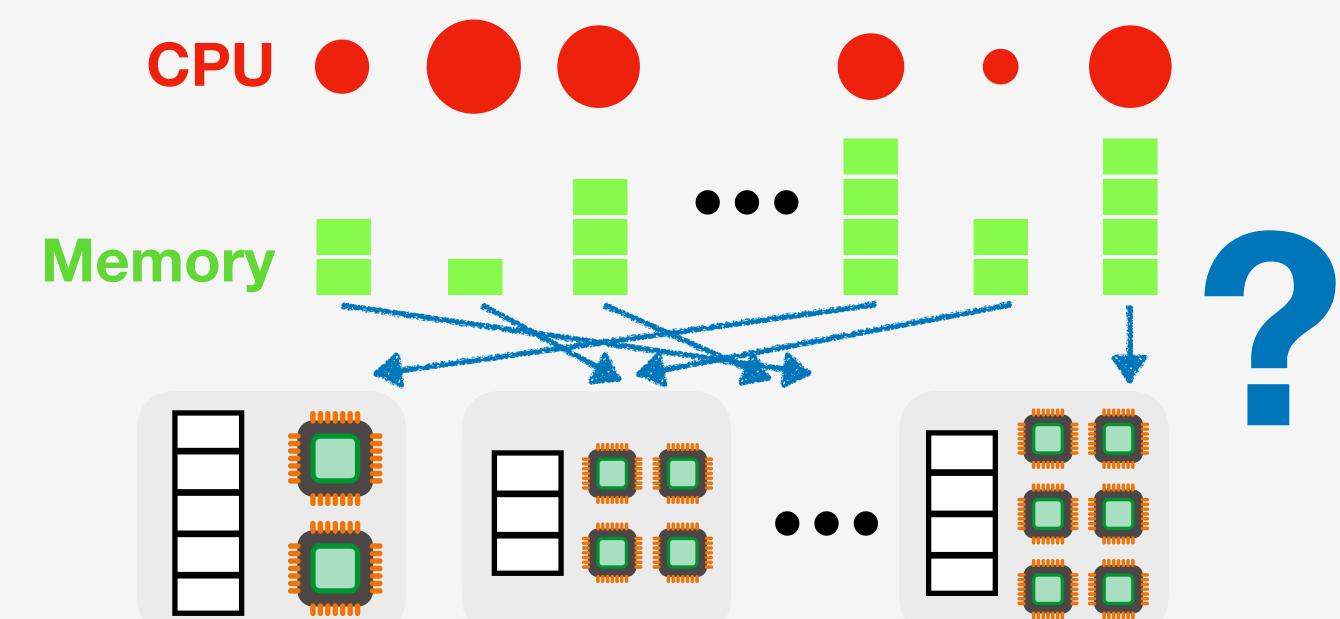
minimize
$$\sum_{m=1}^{M} y_m$$



$$y_m = 1$$
 if machine m is used $x_{s,m} = 1$ if service s runs on m

$$x \in \{0,1\}^{S \times M}, y \in \{0,1\}^{M}$$

minimize
$$\sum_{m=1}^{M} y_m$$



Each service on one machine only

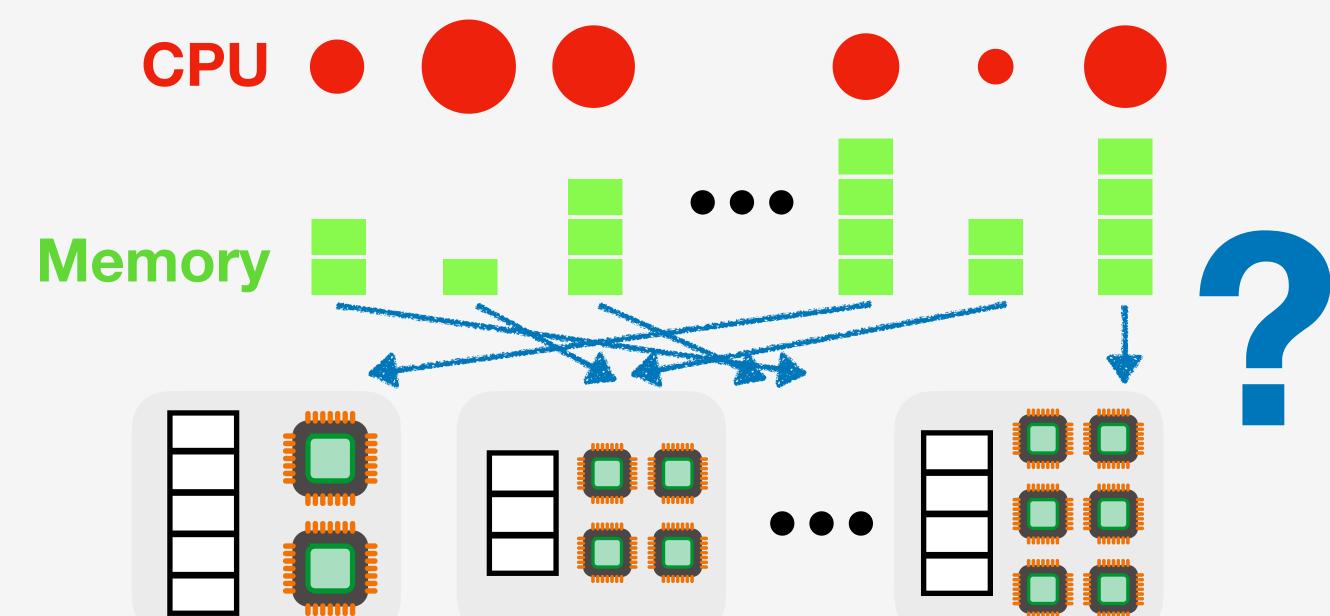
$$\sum_{m=1}^{M} x_{s,m} = 1 \quad \forall s$$

$$y_m = 1$$
 if machine m is used

$$x_{s,m} = 1$$
 if service s runs on m

$$x \in \{0,1\}^{S \times M}, y \in \{0,1\}^{M}$$

minimize
$$\sum_{m=1}^{M} y_m$$



Each service on one machine only

$$\sum_{m=1}^{M} x_{s,m} = 1 \quad \forall s$$

$$y_m \ge x_{s,m} \ \forall s, m$$

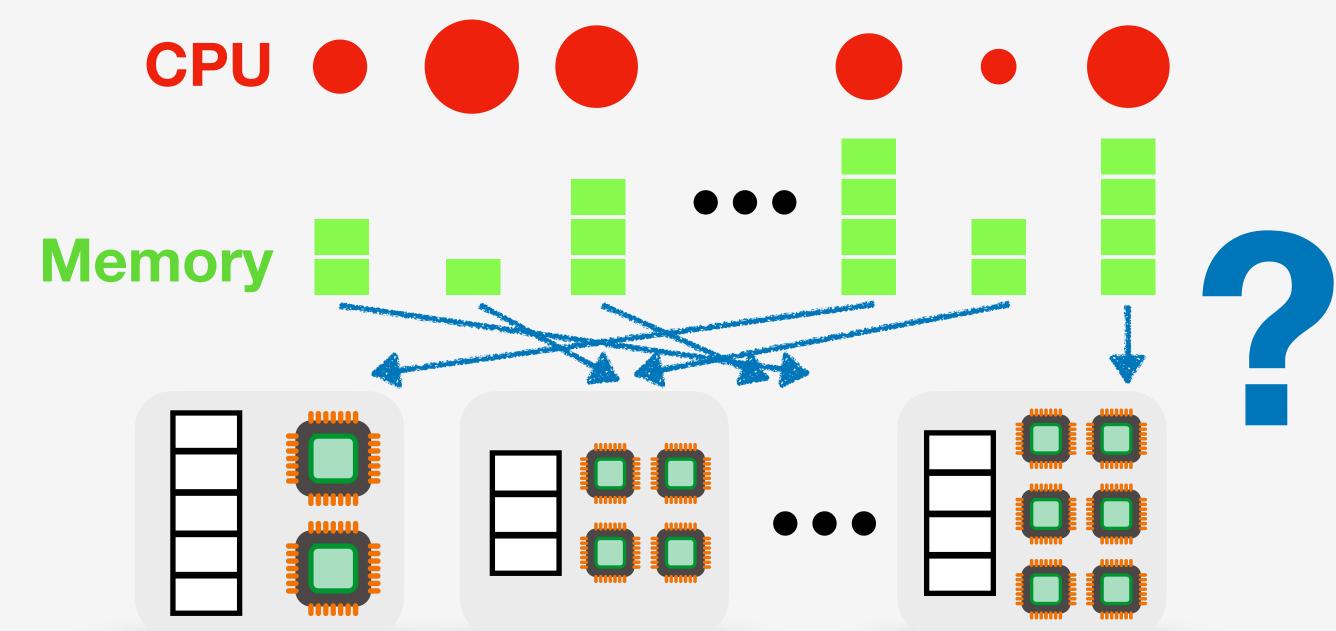
Machine is "ON" if a job is assigned to it

$$y_m = 1$$
 if machine m is used

$$x_{s,m} = 1$$
 if service s runs on m

$$x \in \{0,1\}^{S \times M}, y \in \{0,1\}^{M}$$

minimize
$$\sum_{m=1}^{M} y_m$$



Each service on one machine only

$$\sum_{m=1}^{M} x_{s,m} = 1 \quad \forall s$$

$$y_m \ge x_{s,m} \ \forall s, m$$

Machine is "ON" if a job is assigned to it

Memory capacity

$$\sum_{s=1}^{S} \operatorname{mem}(s) \cdot x_{s,m} \leq \operatorname{cap-mem}(m) \ \forall m$$

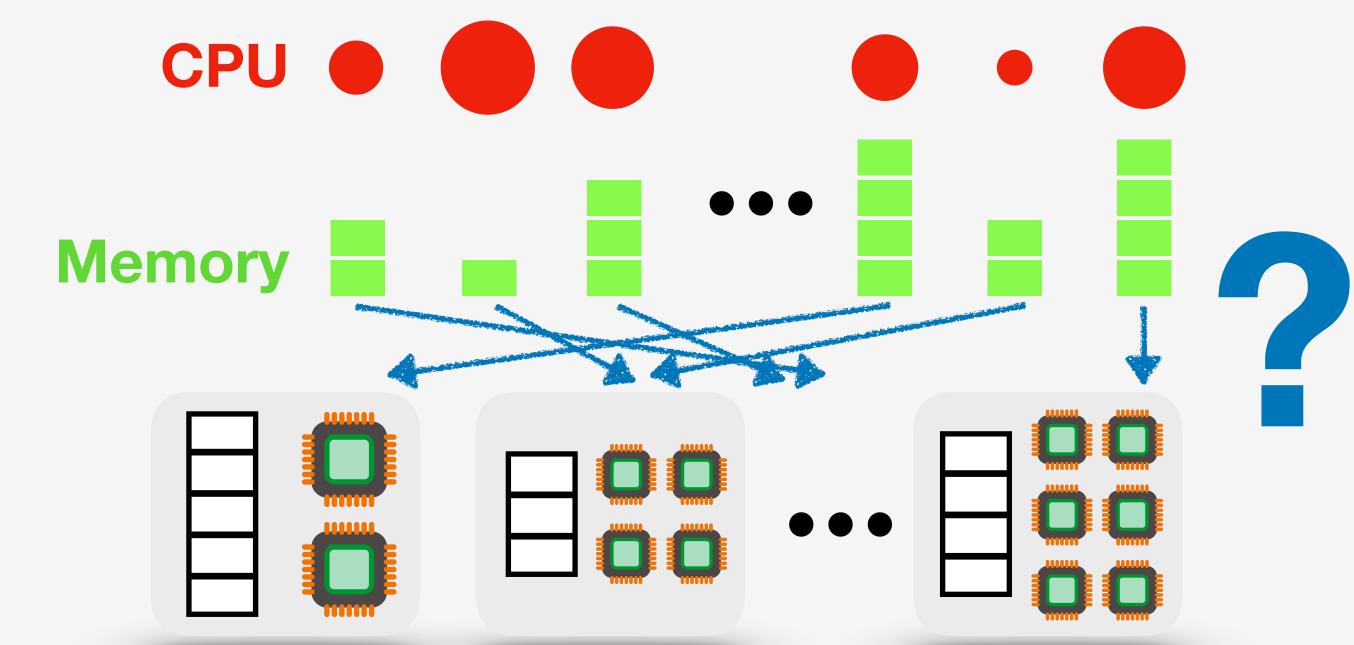
$$y_m = 1$$
 if machine m is used

$$x_{s,m} = 1$$
 if service s runs on m

$$x \in \{0,1\}^{S \times M}, y \in \{0,1\}^{M}$$

minimize
$$\sum_{m=1}^{M} y_m$$

M Machines



Constraints:

Each service on one machine only

$$\sum_{m=1}^{M} x_{s,m} = 1 \quad \forall s$$

$$y_m \ge x_{s,m} \ \forall s, m$$

Machine is "ON" if a job is assigned to it

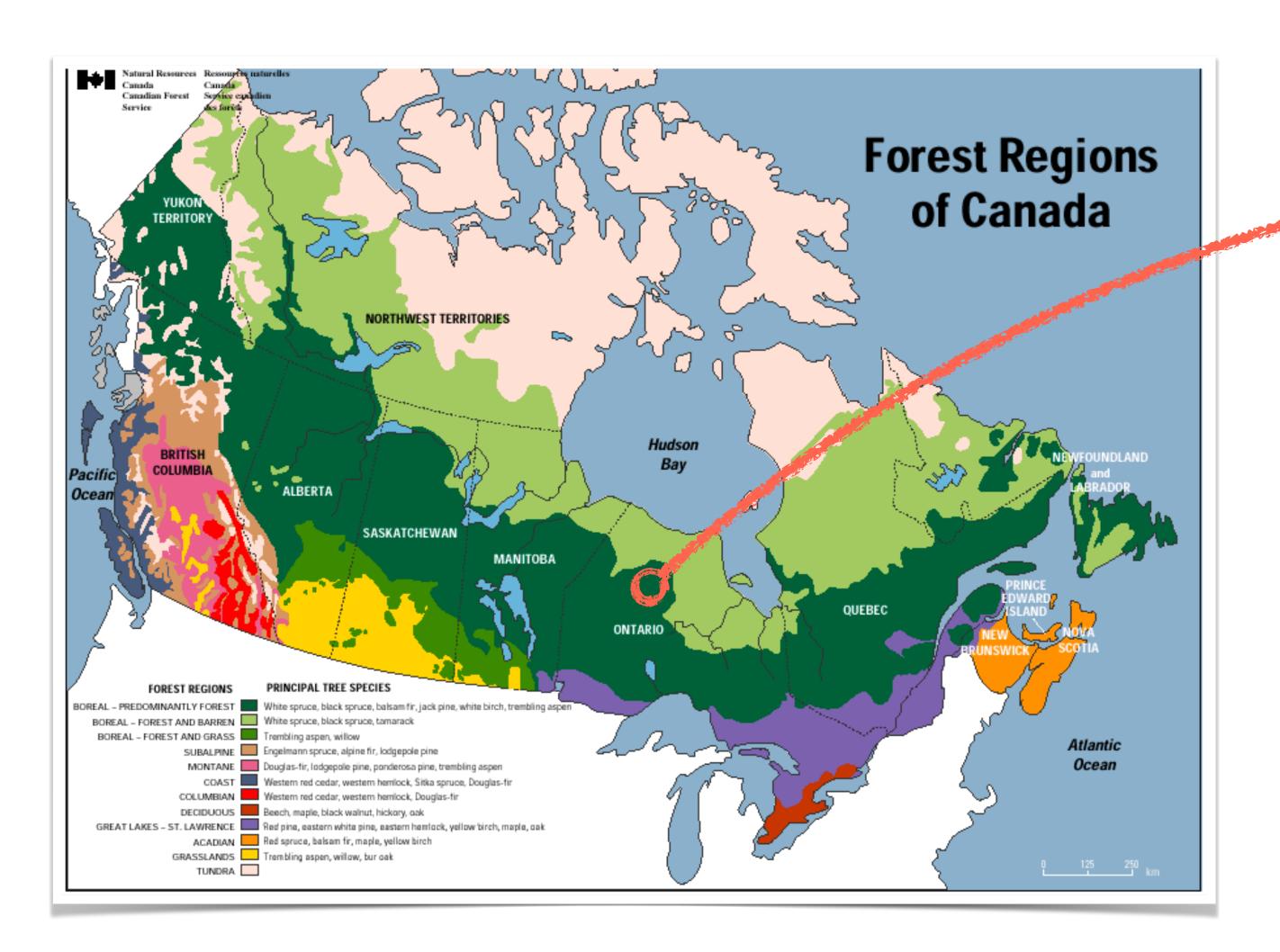
Memory capacity

$$\sum_{s=1}^{mem(s)} \cdots x_{s,m} \leq \text{cap-mem}(m) \ \forall m$$

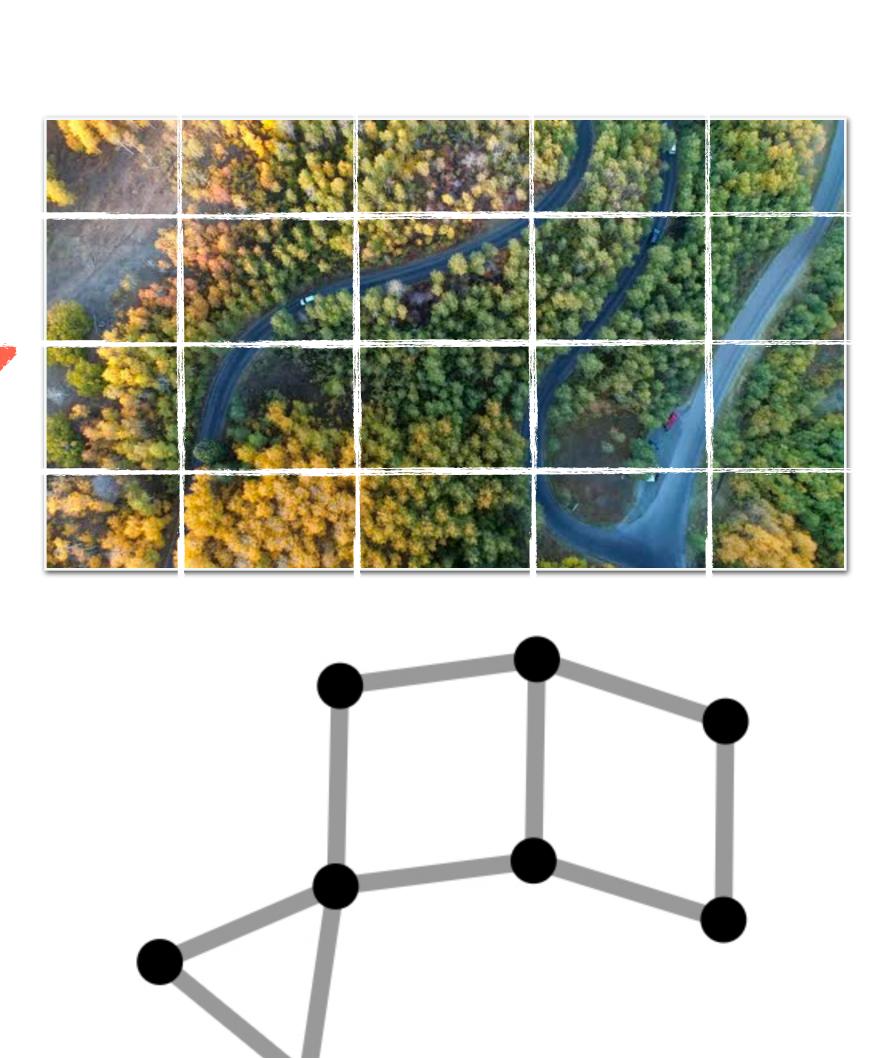
$$\sum_{s=1}^{S} \text{cpu}(s) \cdot x_{s,m} \leq \text{cap-cpu}(m) \ \forall m$$

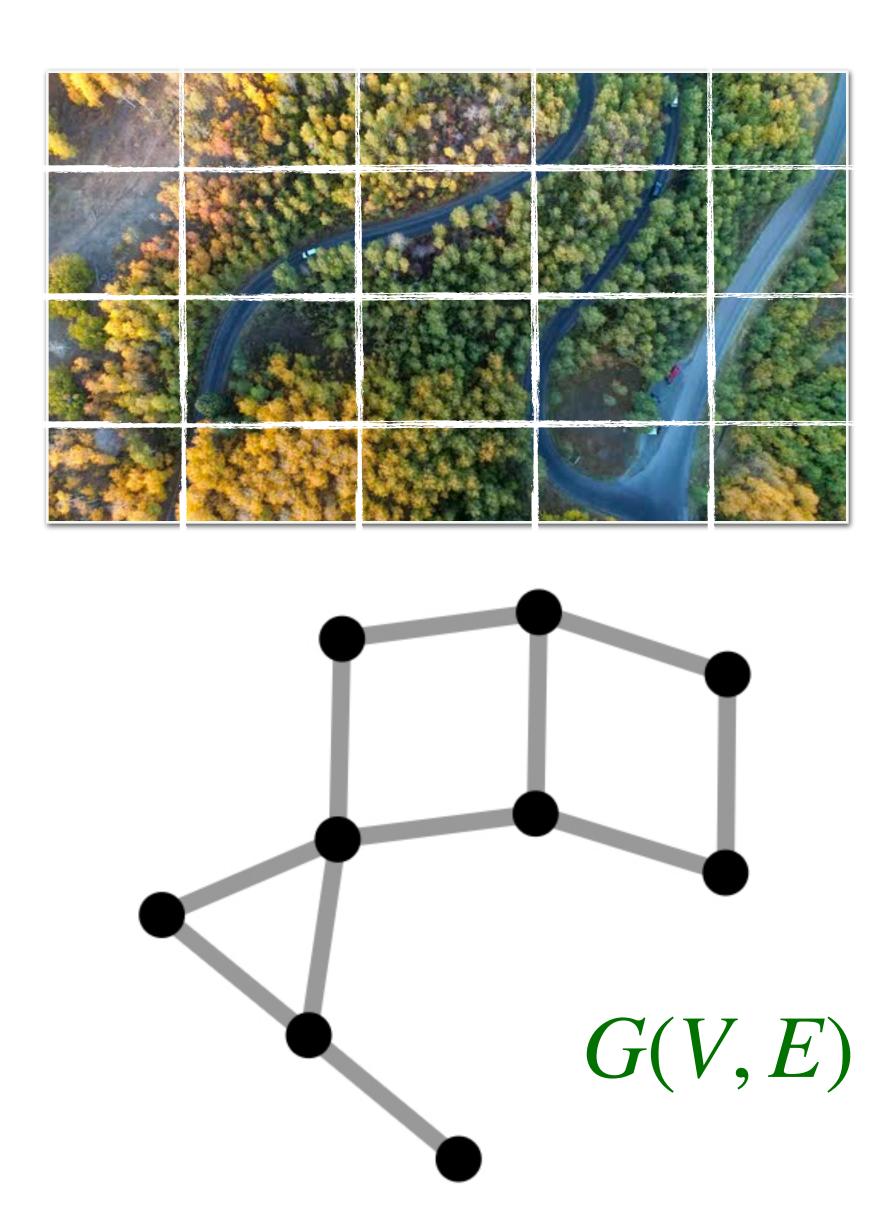
$$\sum_{s=1}^{S} \text{cpu}(s) \cdot x_{s,m} \leq \text{cap-cpu}(m)$$
Processor capacity



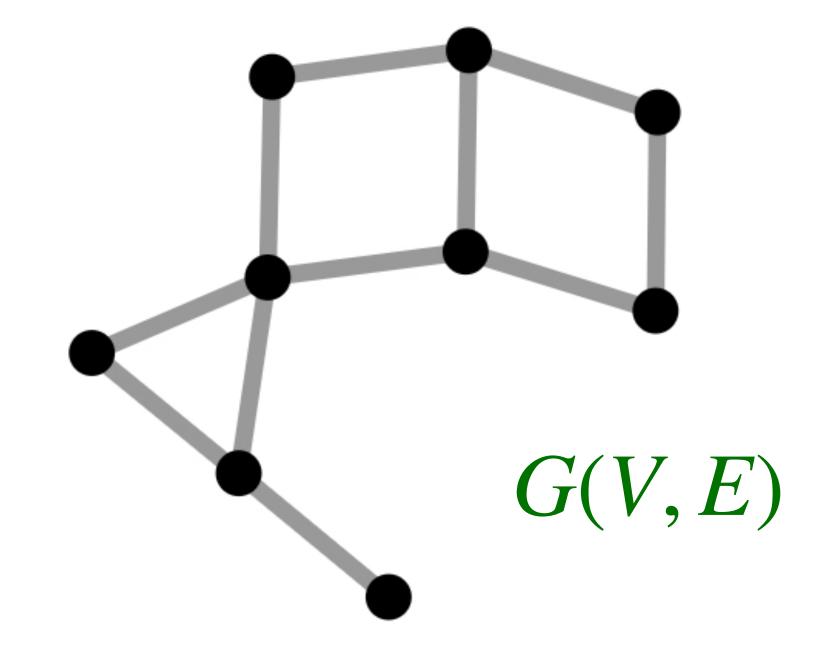








Goal: Harvest subset of parcels to maximize revenue; pay cost for harvesting adjacent parcels

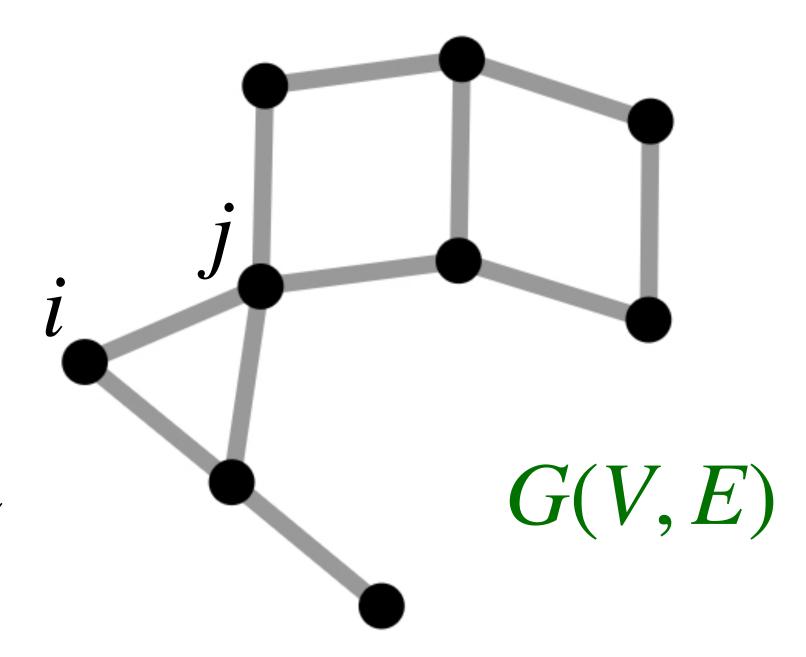


Goal: Harvest subset of parcels to maximize revenue; pay cost for harvesting adjacent parcels

maximize
$$\sum_{i \in V} r_i x_i - \sum_{(i,j) \in E} c_{ij} y_{ij}$$

subject to
$$x_i + x_j - y_{ij} \le 1$$

$$x \in \{0,1\}^n, y \in \{0,1\}^m$$

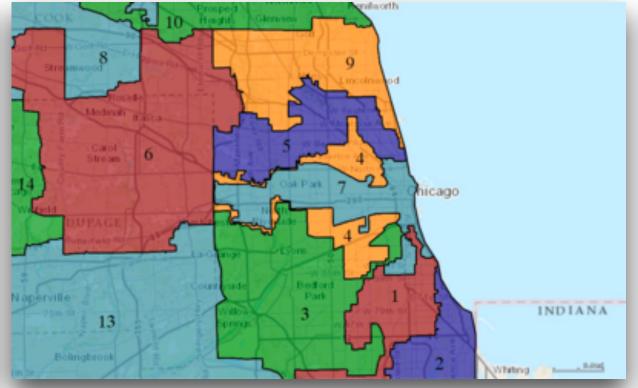


Auction Design

Data Center Management

Political Districting

Kidney Exchange

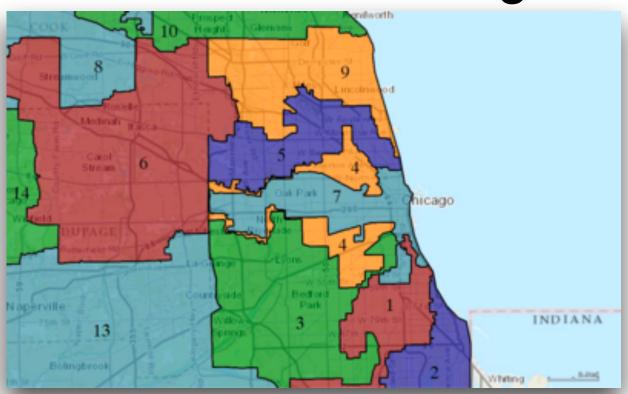


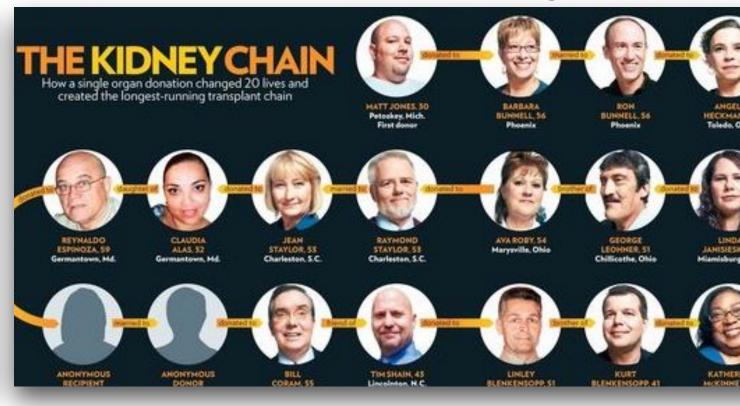
Auction Design

Data Center Management

Political Districting

Kidney Exchange



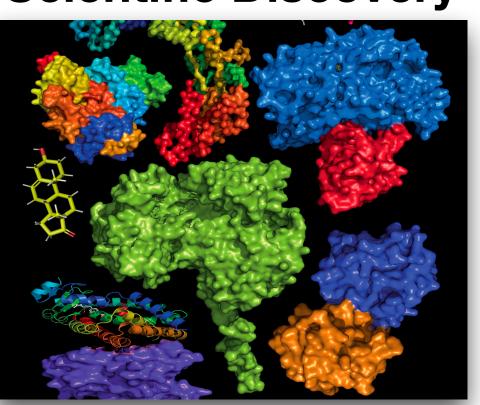


Energy Systems

Scientific Discovery

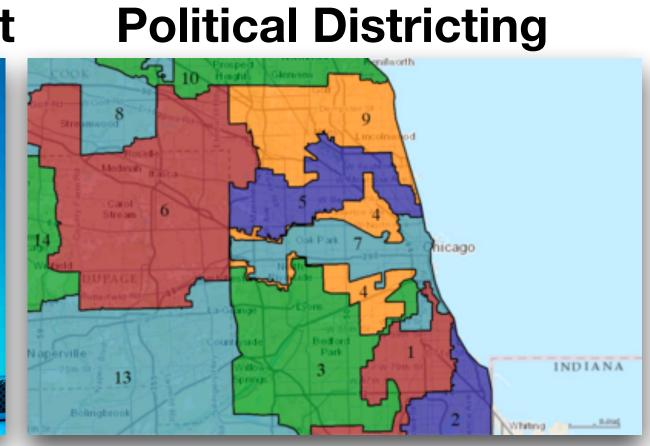
Ridesharing

Cancer Therapeutics

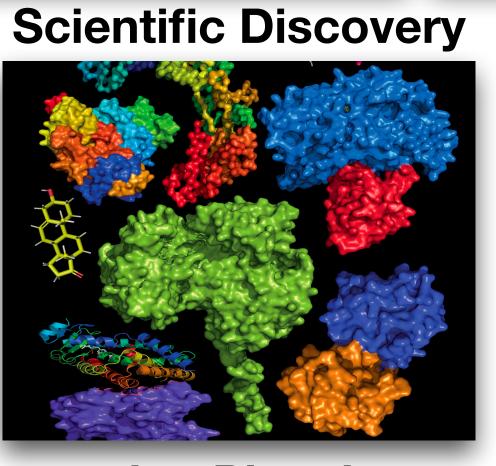


Auction Design

Data Center Management



Energy Systems



Airline Scheduling

Condor

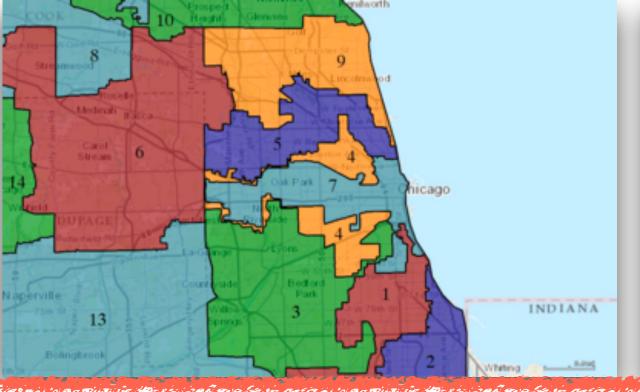
Co

Conservation Planning

Auction Design Data Center Management

Political Districting

Kidney Exchange

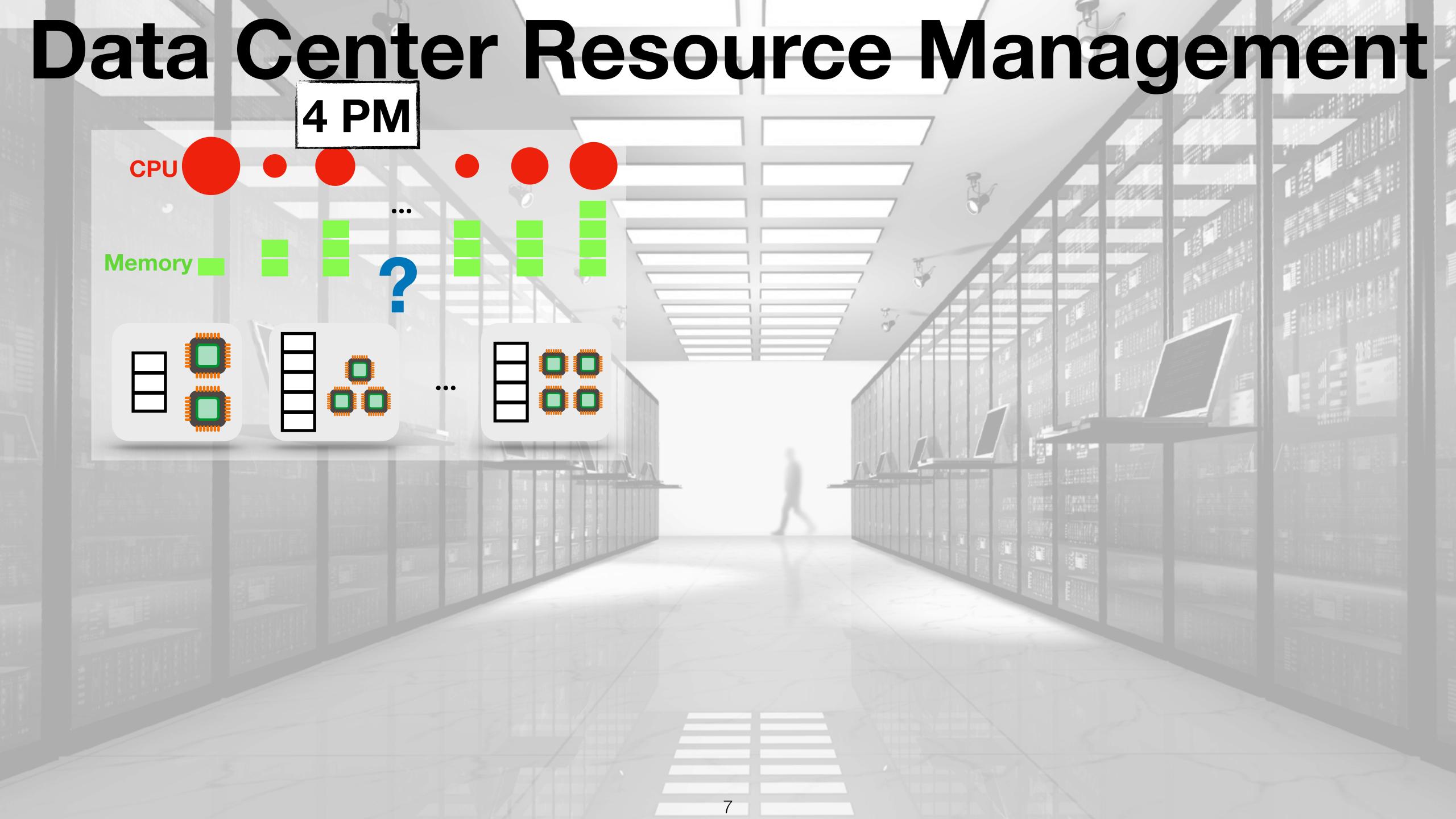


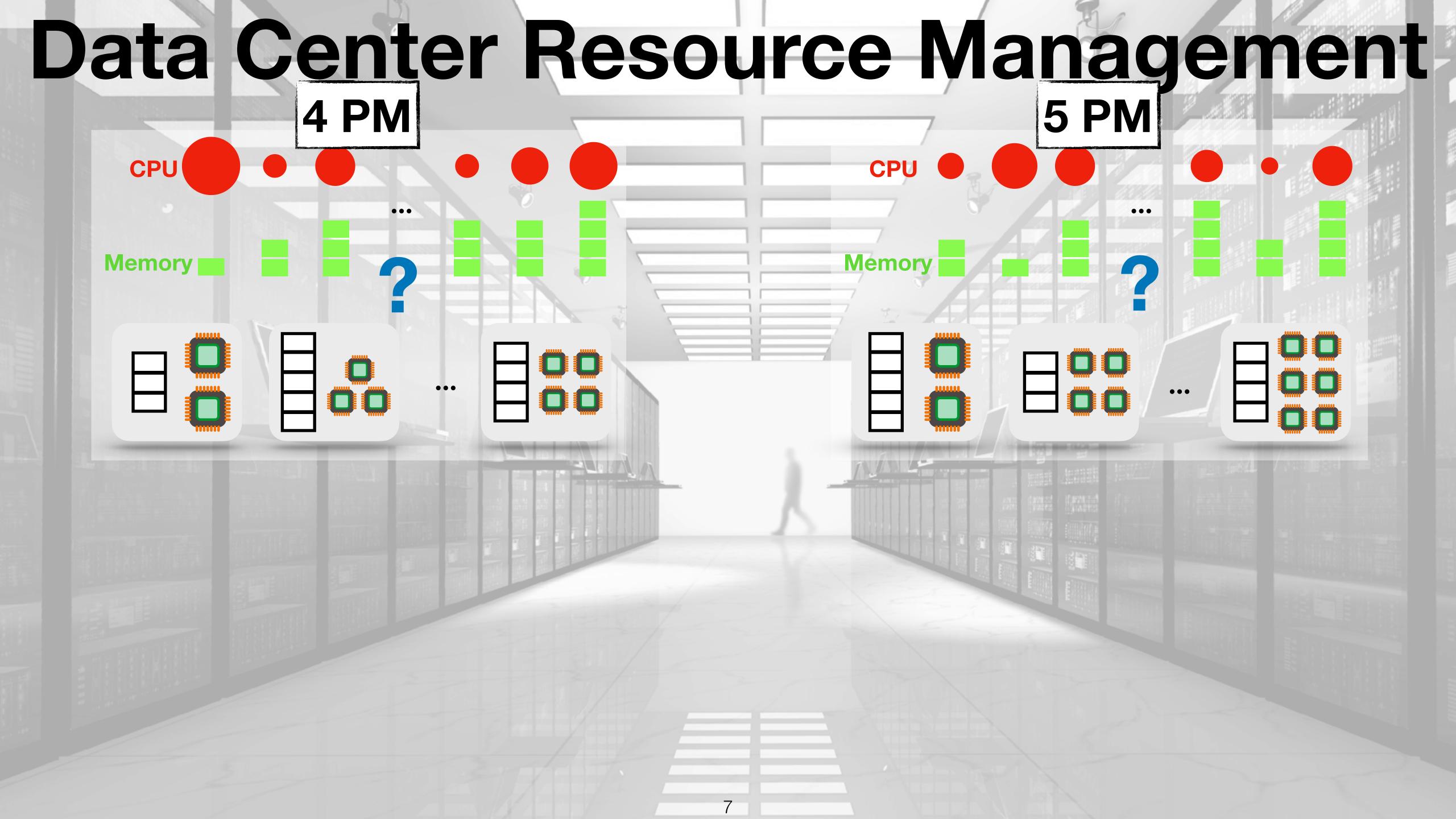
> 50% of INFORMS Edelman Award winners use Discrete Optimization

→ Billions (\$) in savings/profit

George Nemhauser, Plenary at EURO INFORMS, 2013 ons

utics





Data Center Resource Management 4 PM **5 PM** Memory 6 PM

Data Center Resource Management 4 PM **5 PM** Memory 6 PM

Tackling NP-Hard Problems

Paradigm	Design Rationale		

Paradigm	Design Rationale	
Exhaustive Search	Tight formulations Powerful Branch-and-Bound solvers	

Paradigm	Design Rationale	
Exhaustive Search	Tight formulations Powerful Branch-and-Bound solvers	
Approximation Algorithms	Good worst-case guarantees	

Paradigm	Design Rationale
Exhaustive Search	Tight formulations Powerful Branch-and-Bound solvers
Approximation Algorithms	Good worst-case guarantees
Heuristics	Intuition exploiting problem structure Empirical trial-and-error

Paradigm

Design Rationale

Exhaustive Search

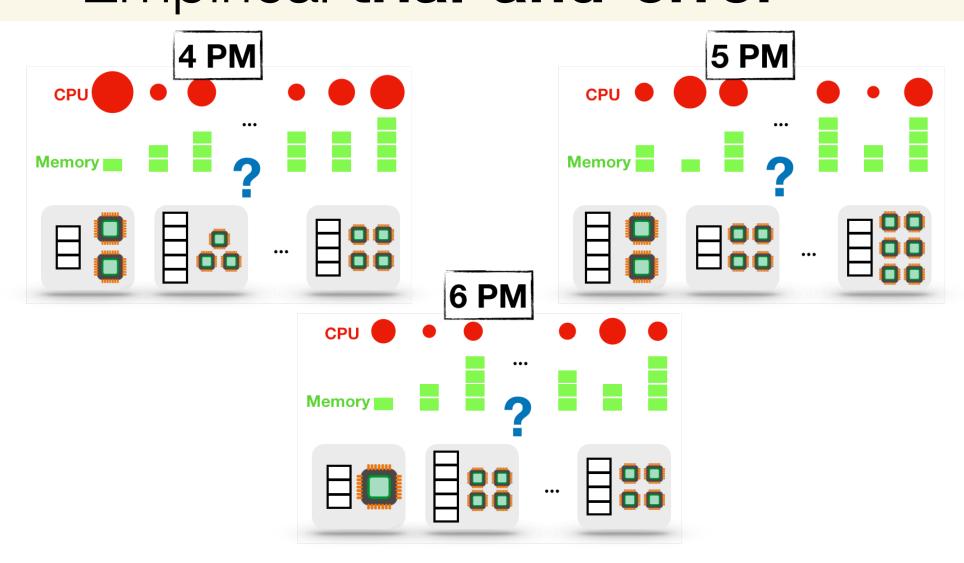
Tight formulationsPowerful **Branch-and-Bound** solvers

Approximation Algorithms

Good worst-case guarantees

Heuristics

Intuition exploiting problem structure Empirical trial-and-error



Paradigm

Design Rationale

Exhaustive Search

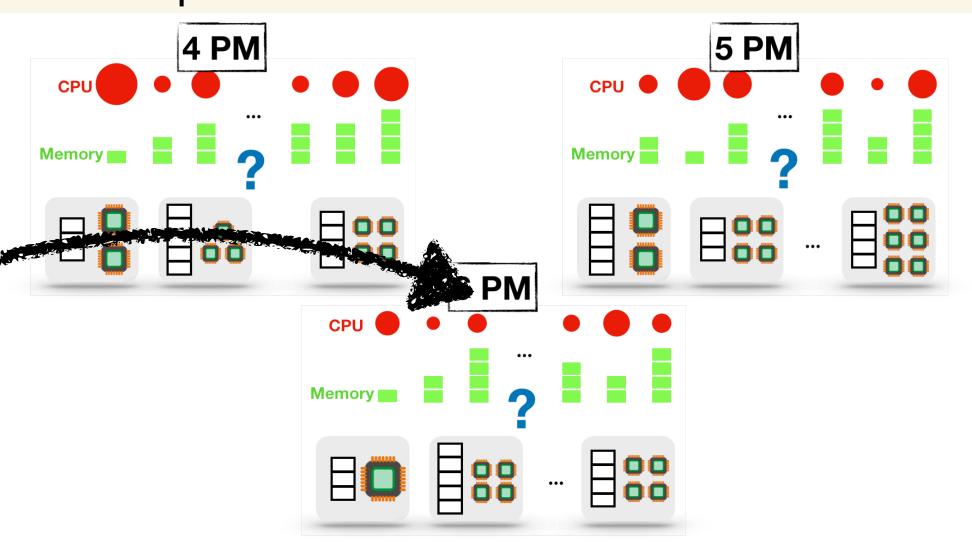
Tight formulationsPowerful **Branch-and-Bound** solvers

Approximation Algorithms

Good worst-case guarantees

Heuristics

Intuition exploiting problem structure Empirical trial-and-error



Paradigm

Customization via...

Exhaustive Search

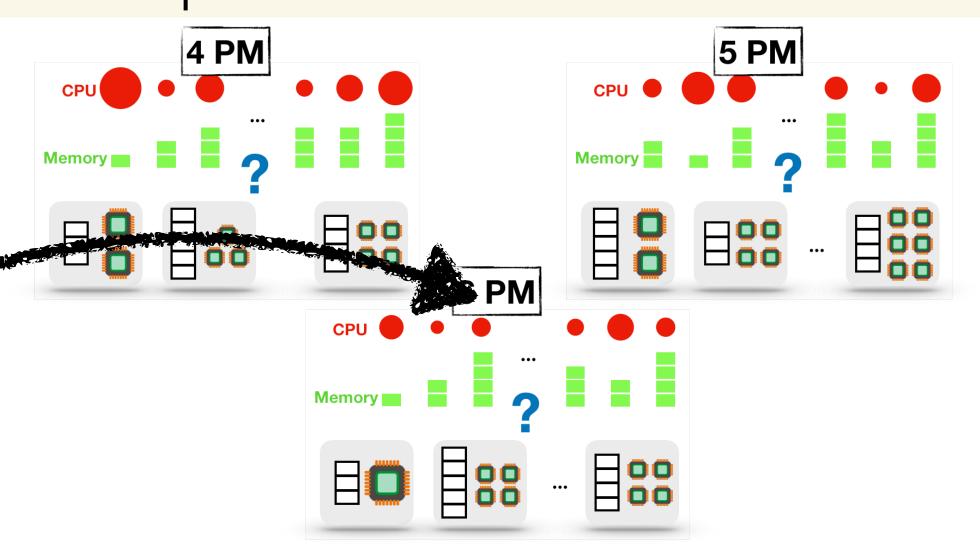
Tight formulationsPowerful **Branch-and-Bound** solvers

Approximation Algorithms

Good worst-case guarantees

Heuristics

Intuition exploiting problem structure Empirical trial-and-error



Paradigm

Customization via...

Exhaustive Search

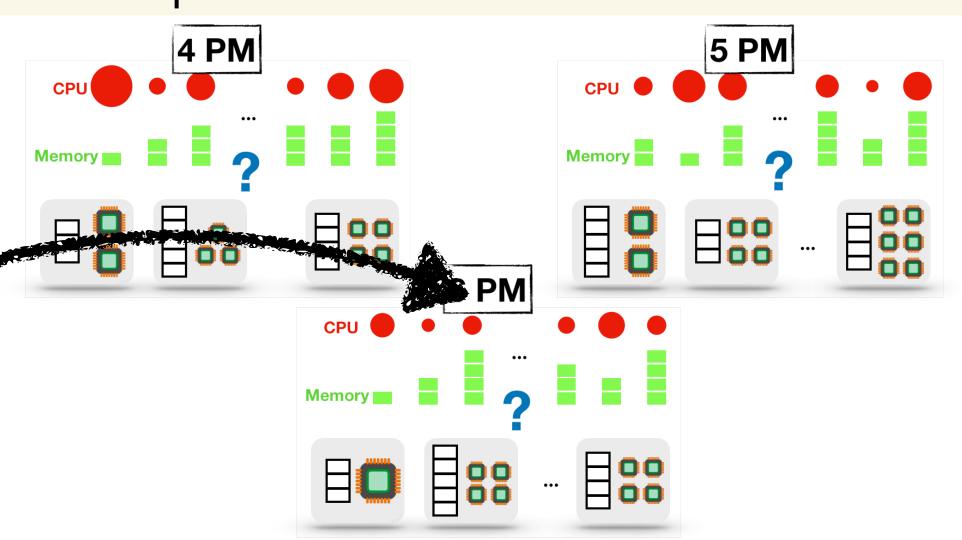
Problem-Specific Bounding functions or search rules

Approximation Algorithms

Good worst-case guarantees

Heuristics

Intuition exploiting problem structure Empirical trial-and-error



Paradigm

Exhaustive Search

Approximation Algorithms

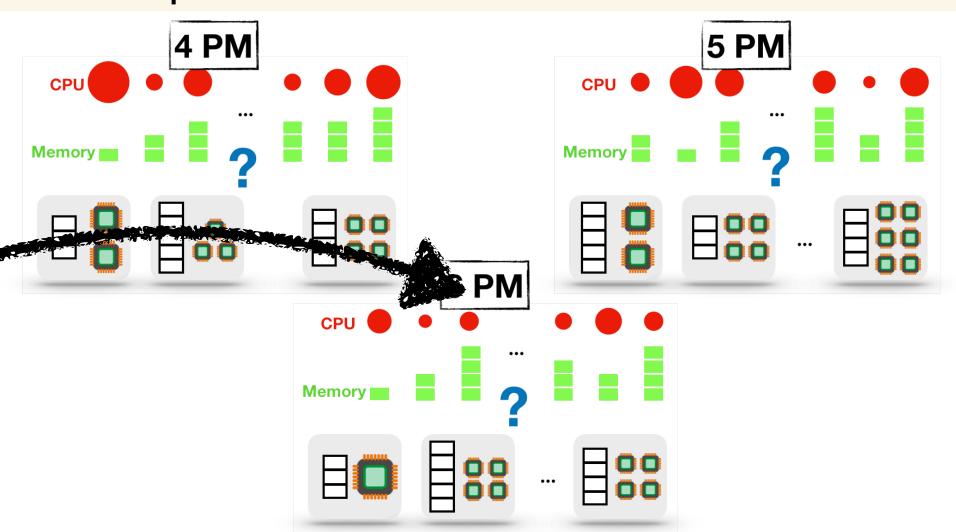
Heuristics

Customization via...

Problem-Specific Bounding functions or search rules

Make explicit **assumptions** on input distribution and **redesign algo.**

Intuition exploiting problem structure Empirical trial-and-error



Paradigm

Exhaustive Search

Approximation Algorithms

Heuristics

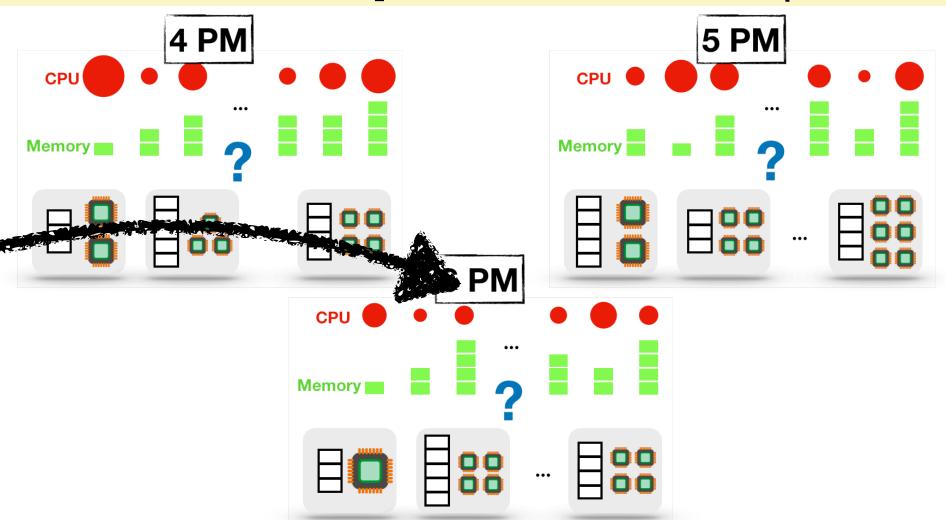
How do you tailor the algorithm to YOUR instances?

Customization via...

Problem-Specific Bounding functions or search rules

Make explicit **assumptions** on input distribution and **redesign algo.**

Analyze algorithm behavior on your inputs; look for patterns to exploit



Paradigm

ANSWER:

Manual intellectual/ experimental effort required

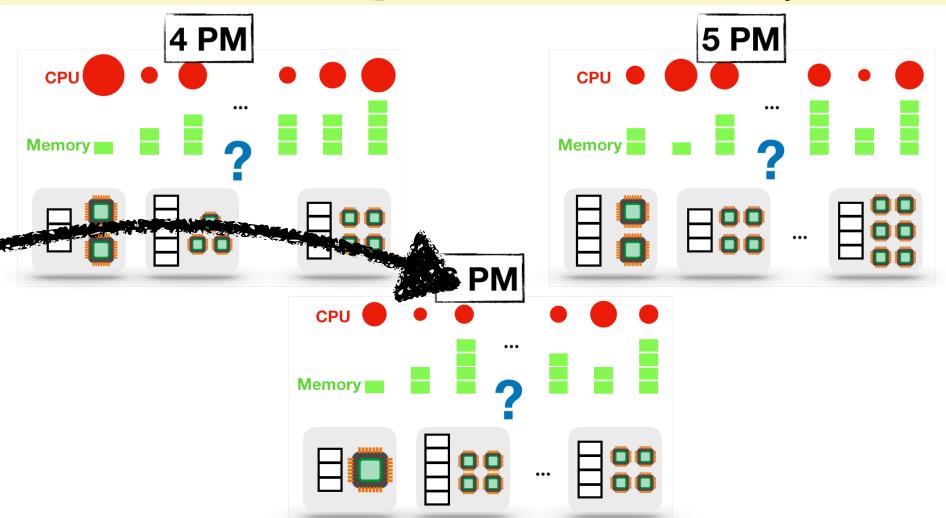
How do you **tailor** the algorithm to **YOUR** instances?

Customization via...

Problem-Specific Bounding functions or search rules

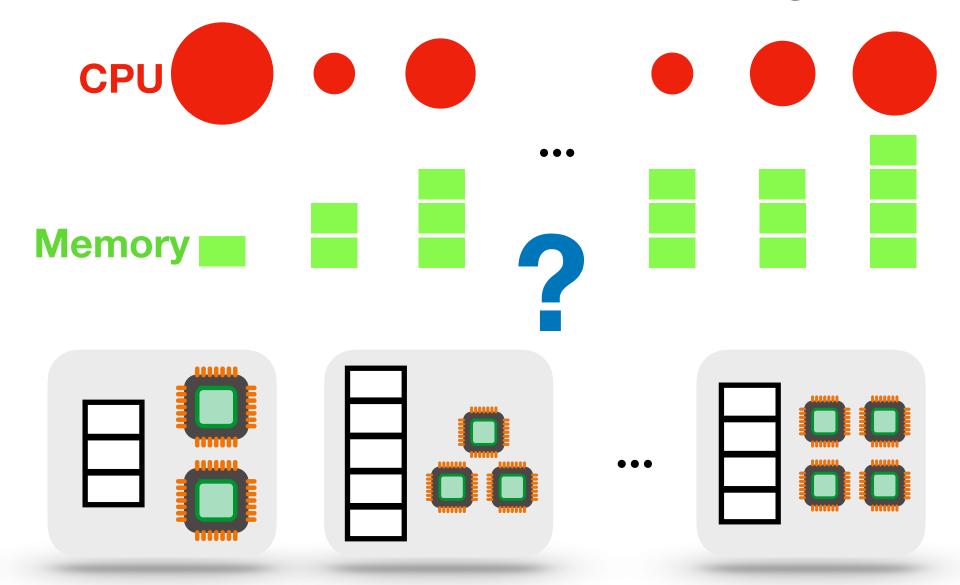
Make explicit **assumptions** on input distribution and **redesign algo.**

Analyze algorithm behavior on your inputs; look for patterns to exploit

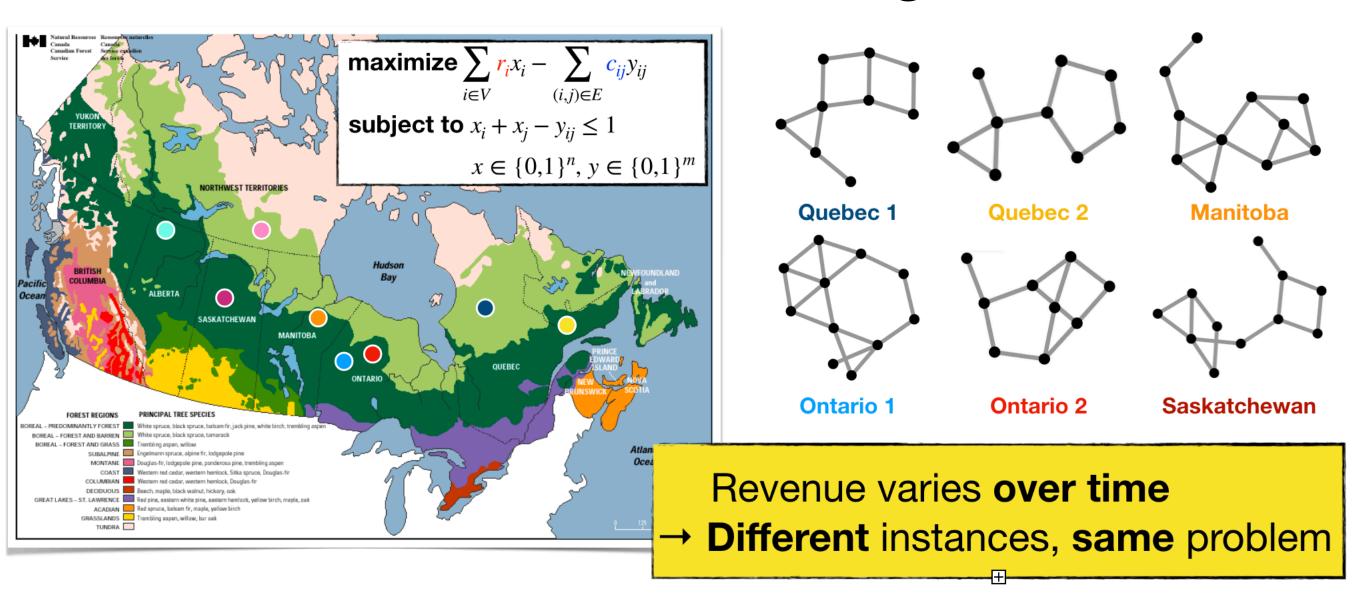


Opportunity Automatically tailor algorithms to a family of instances

Data Center Resource Management

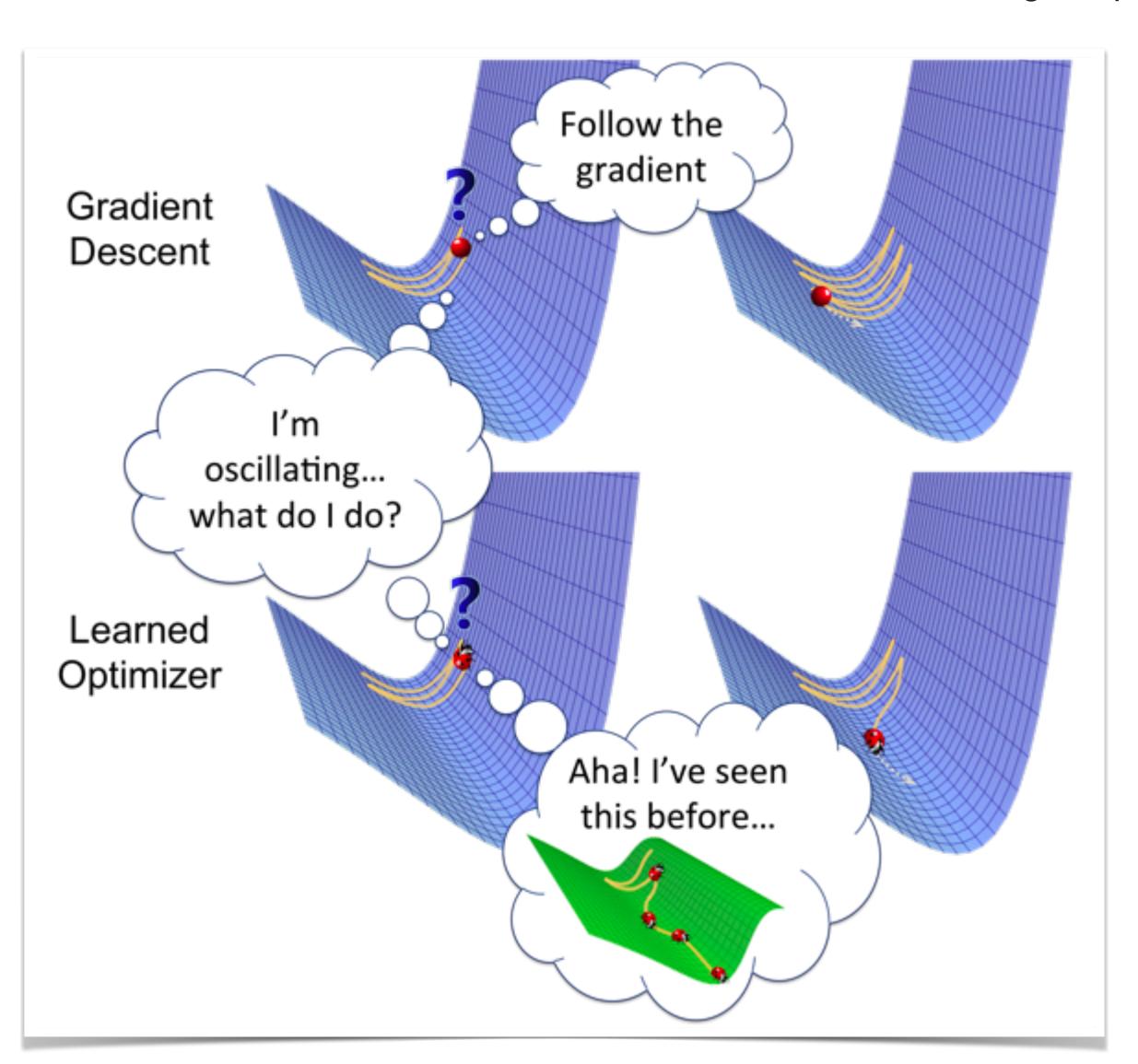


Forest Harvesting....



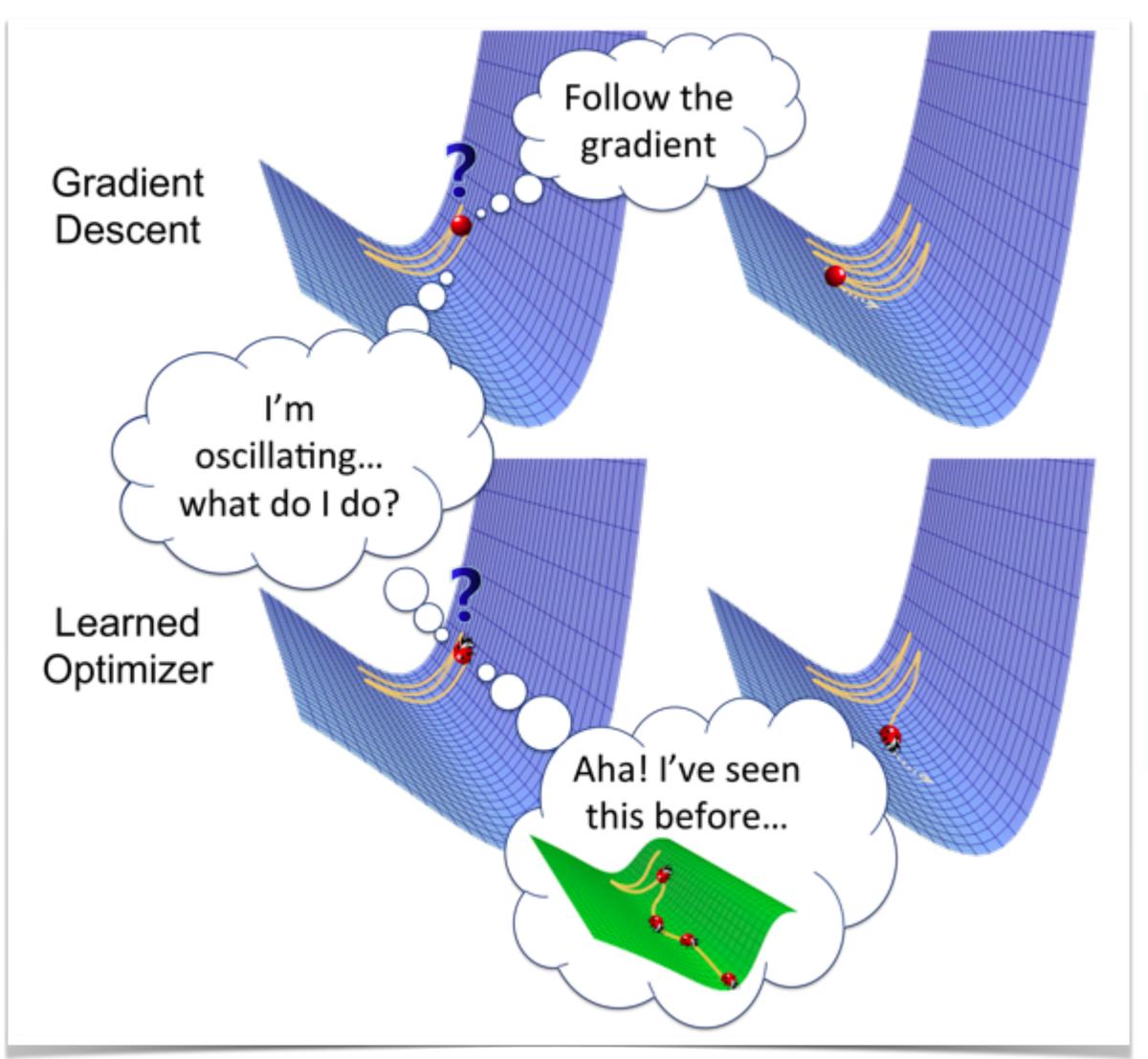
Warm-up: Learning in Gradient Descent

Source: Ke Li, http://bair.berkeley.edu/blog/2017/09/12/learning-to-optimize-with-rl
Li, Ke, and Jitendra Malik. "Learning to optimize." arXiv:1606.01885, 2016 and ICLR, 2017



Warm-up: Learning in Gradient Descent

Source: Ke Li, http://bair.berkeley.edu/blog/2017/09/12/learning-to-optimize-with-rl
Li, Ke, and Jitendra Malik. "Learning to optimize." arXiv:1606.01885, 2016 and ICLR, 2017



Algorithm 1 General structure of optimization algorithms

Require: Objective function
$$f$$
 $x^{(0)} \leftarrow \text{random point in the domain of } f$ for $i=1,2,\ldots$ do
$$\Delta x \leftarrow \phi(\{x^{(j)},f(x^{(j)}),\nabla f(x^{(j)})\}_{j=0}^{i-1})$$
 if stopping condition is met then return $x^{(i-1)}$

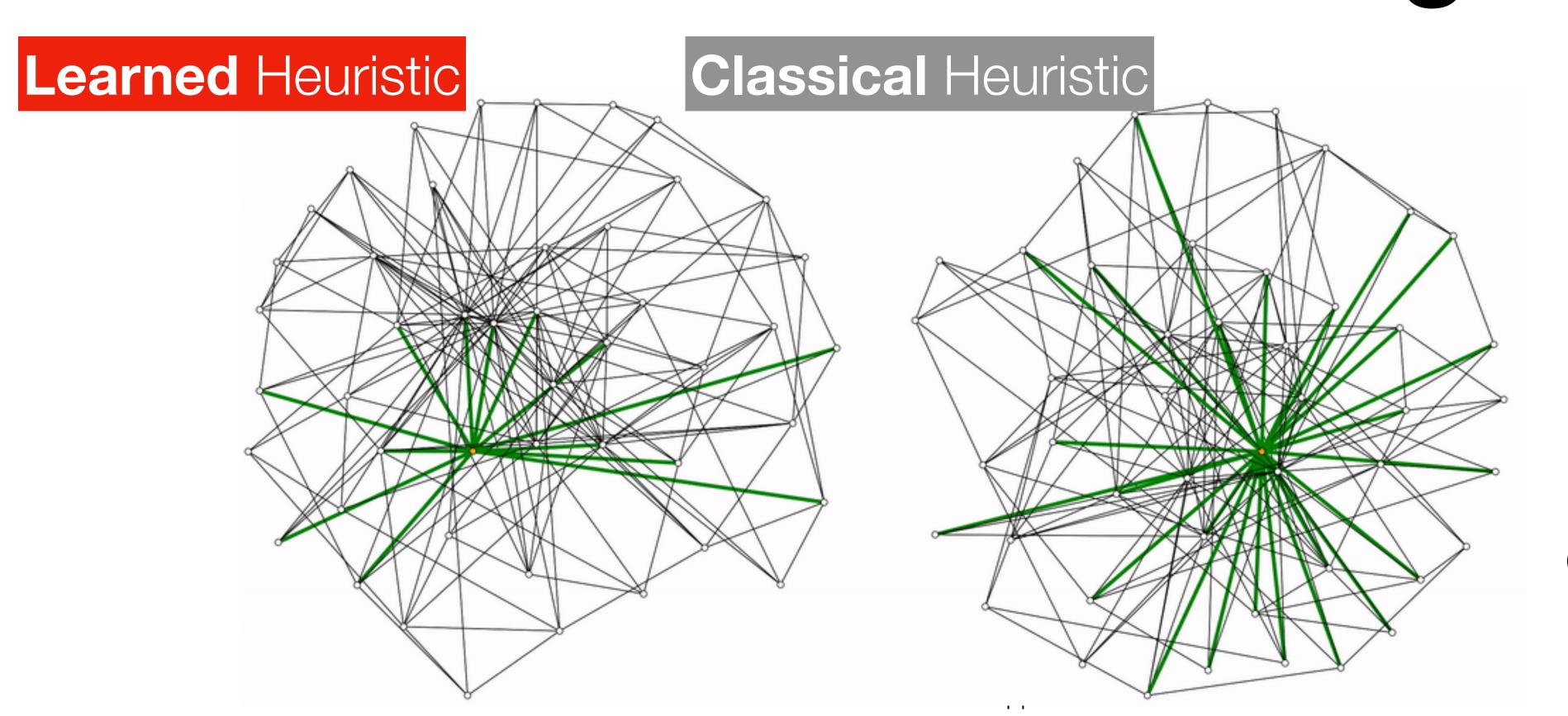
end if $x^{(i)} \leftarrow x^{(i-1)} + \Delta x$ end for

Gradient Descent $\phi(\cdot) = -\gamma \nabla f(x^{(i-1)})$

Momentum $\phi(\cdot) = -\gamma \left(\sum_{j=0}^{i-1} \alpha^{i-1-j} \nabla f(x^{(j)}) \right)$

Learned Algorithm $\phi(\cdot) =$ Neural Net

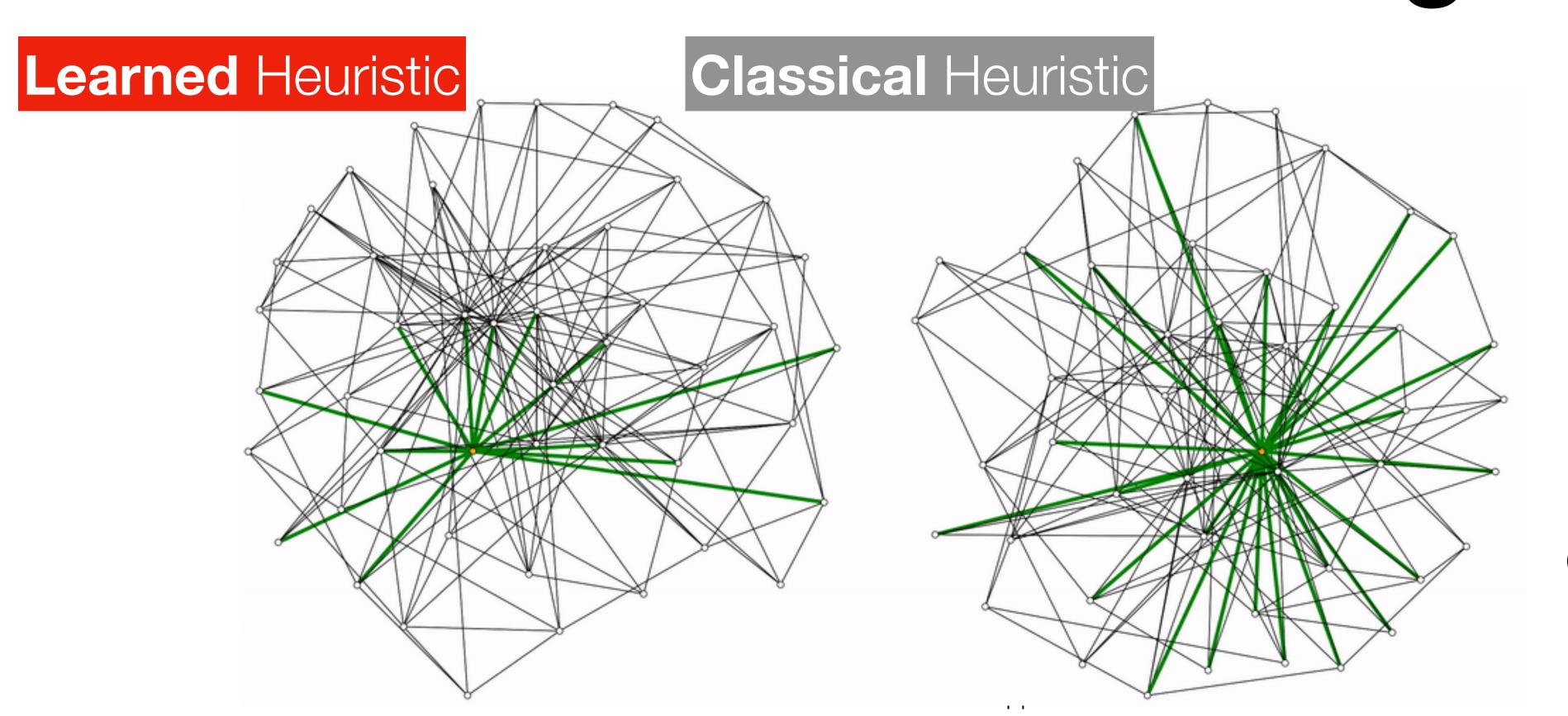
Data-Driven Algorithm Design automatically discovers novel search strategies



Minimum Vertex Cover

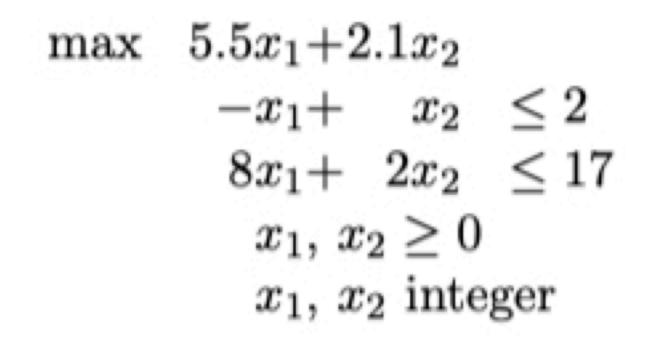
Find smallest vertex subset such that each edge is covered

Data-Driven Algorithm Design automatically discovers novel search strategies



Minimum Vertex Cover

Find smallest vertex subset such that each edge is covered



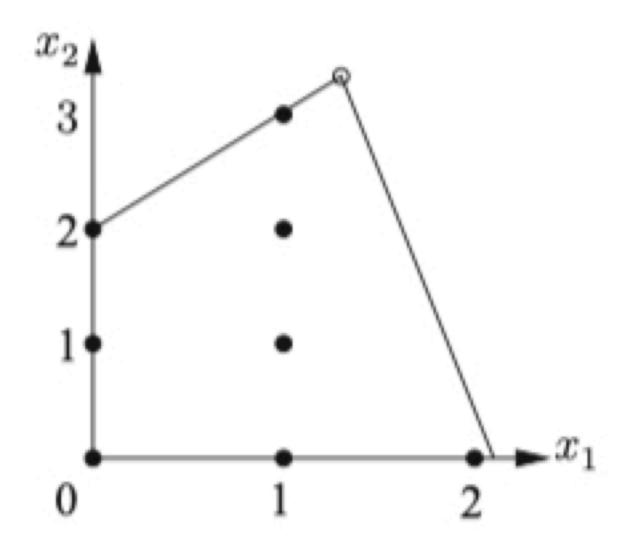


Figure 1.2: A 2-variable integer program

```
-LP-based \min c^T x s.t. Ax \le b, x \in \{0,1\}^n
```

Land & Doig, 1960

- **Select Node**
- 2 Solve LP Relaxation
- 3 Prune?
- 4 Add Cuts
- 5 Run Heuristics
- Branch

$$- LP-based \min_{x} c^{T}x \text{ s.t. } Ax \leq b, x \in \{0,1\}^{n}$$

Land & Doig, 1960

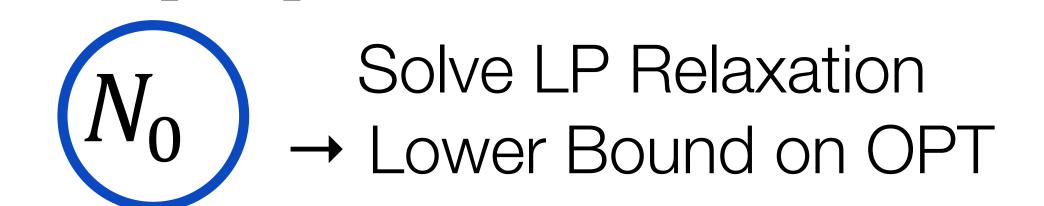
- **Select Node**
- Solve LP Relaxation
- 3 Prune?
- 4 Add Cuts
- Run Heuristics
- Branch

$$-LP$$
-based $\min_{x} c^{T}x$ s.t. $Ax \le b, x \in \{0,1\}^{n}$

Land & Doig, 1960

Repeat:

- **Select Node**
- 2 Solve LP Relaxation
- 3 Prune?
- 4 Add Cuts
- Run Heuristics
- Branch



 $[0,1]^n$

$$-LP-based \min_{x} c^{T}x \text{ s.t. } Ax \leq b, x \in \{0,1\}^{n}$$

Land & Doig, 1960

Repeat:

- **Select Node**
- Solve LP Relaxation
- 3 Prune?
- 4 Add Cuts
- Run Heuristics
- Branch



 $[0,1]^n$

$$-LP$$
-based $\min_{x} c^{T}x$ s.t. $Ax \le b, x \in \{0,1\}^{n}$

Land & Doig, 1960

Repeat:

- **Select Node**
- Solve LP Relaxation
- 3 Prune?
- 4 Add Cuts
- **Run Heuristics**
- Branch

Add Cuts:

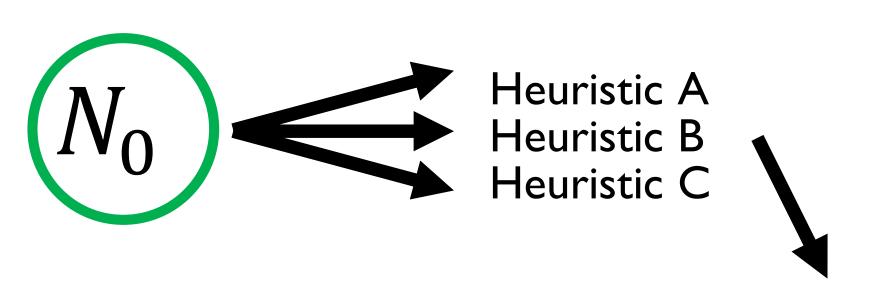
Tightening Constraints

$$-LP-based \min_{x} c^{T}x \text{ s.t. } Ax \leq b, x \in \{0,1\}^{n}$$

Land & Doig, 1960

Repeat:

- **Select Node**
- Solve LP Relaxation
- 3 Prune?
- **Add Cuts**
- 5 Run Heuristics
- Branch

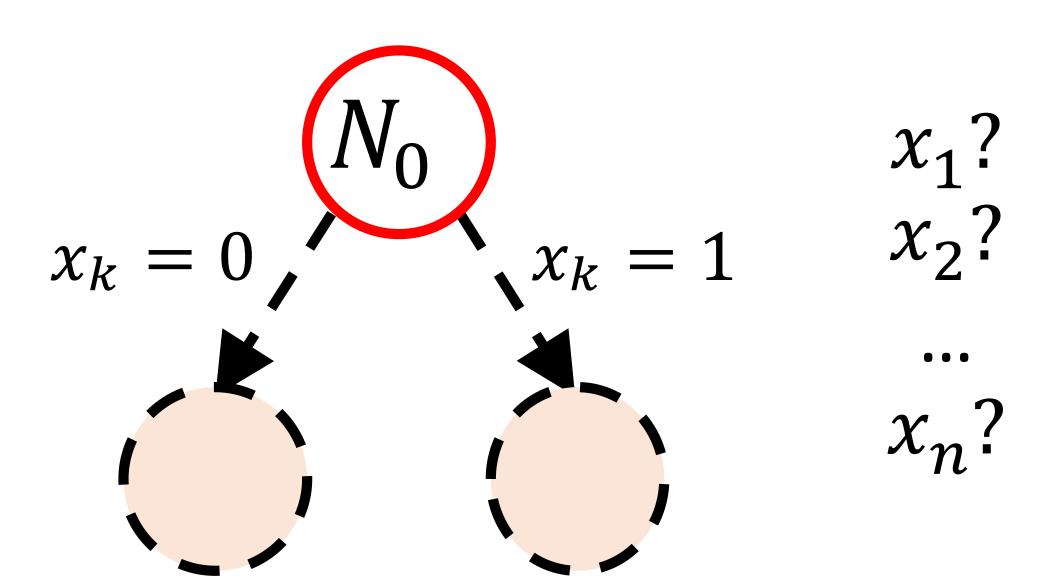


Feasible solution? **Update Best Solution**

$$\min_{x} c^{T} x \text{ s.t. } Ax \leq b, x \in \{0,1\}^{n}$$

Land & Doig, 1960

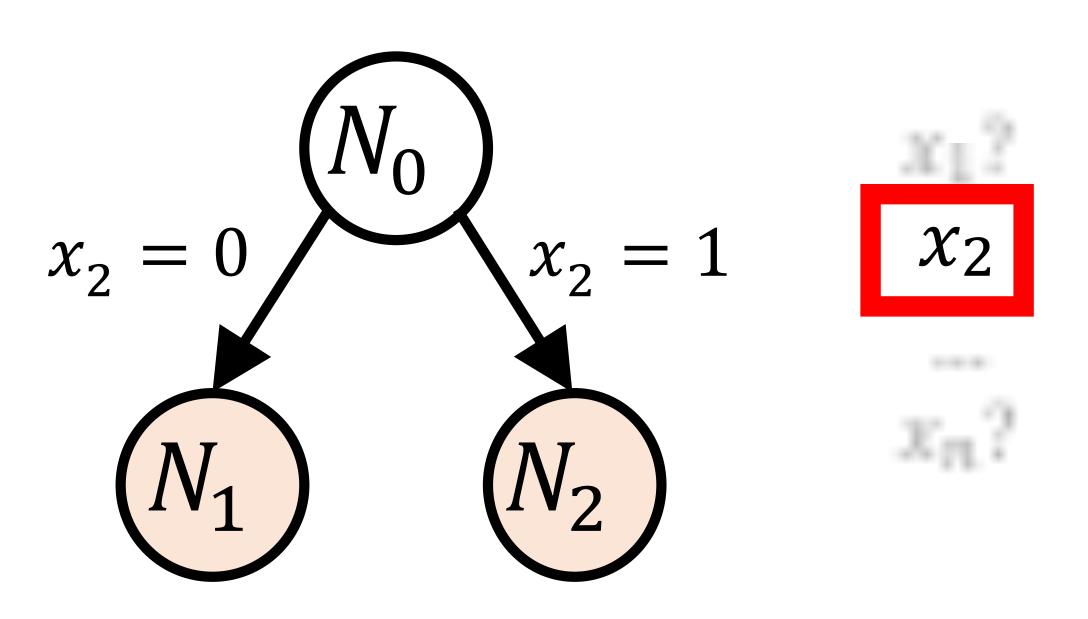
- **Select Node**
- 2 Solve LP Relaxation
- 3 Prune?
- 4 Add Cuts
- 5 Run Heuristics
- 6 Branch



$$- LP-based \min_{x} c^{T}x \text{ s.t. } Ax \leq b, x \in \{0,1\}^{n}$$

Land & Doig, 1960

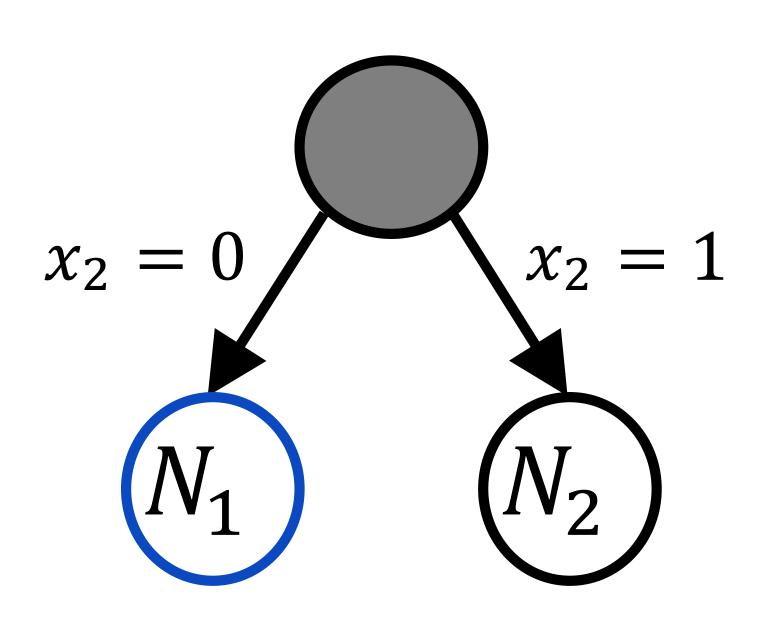
- **Select Node**
- Solve LP Relaxation
- 3 Prune?
- **Add Cuts**
- Run Heuristics
- Branch



$$- LP-based \min_{x} c^{T}x \text{ s.t. } Ax \leq b, x \in \{0,1\}^{n}$$

Land & Doig, 1960

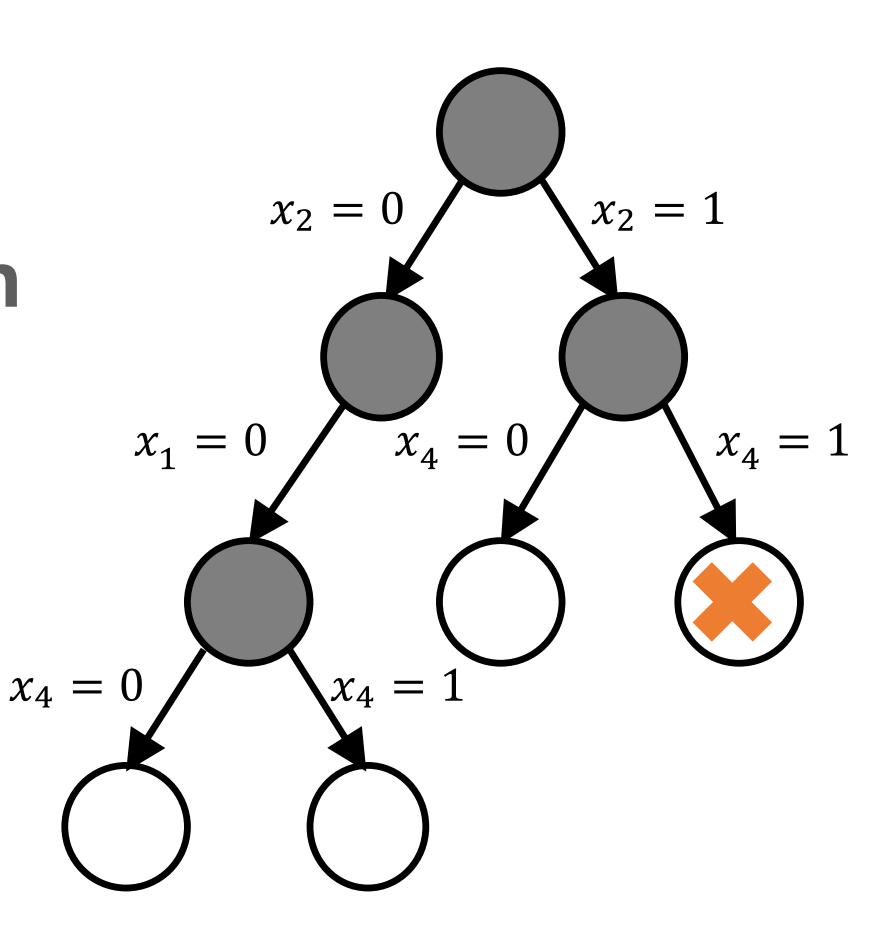
- **Select Node**
- Solve LP Relaxation
- 3 Prune?
- **Add Cuts**
- **Run Heuristics**
- Branch



$$- LP-based \min_{x} c^{T}x \text{ s.t. } Ax \leq b, x \in \{0,1\}^{n}$$

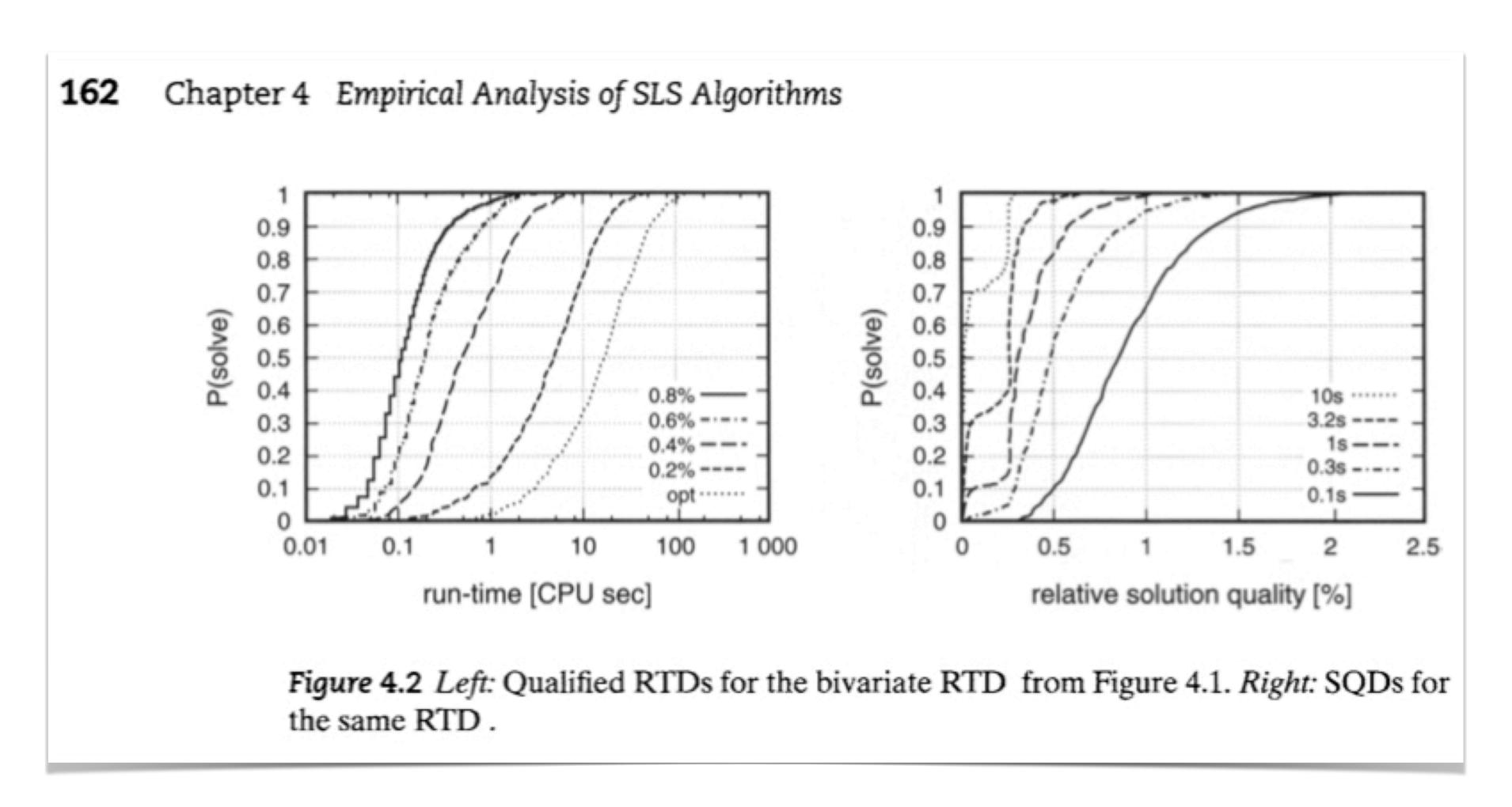
Land & Doig, 1960

- **Select Node**
- Solve LP Relaxation
- Prune?
- **Add Cuts**
- Run Heuristics
- Branch



Empirical algorithmics

How do we evaluate and compare algorithms?



IBM Knowledge Center

Managing sets of parameters

Parameter names

Correspondence of parameters between APIs

Saving parameter settings to a file in the C API

Topical list of parameters

Barrier

Benders algorithm

Distributed MIP

MIP

MIP general

MIP strategies

MIP cuts

MIP tolerances

MIP limits

Here are links to parameters controlling MIP strategies.

algorithm for initial MIP relaxation

Benders strategy

MIP subproblem algorithm

MIP variable selection strategy

MIP strategy best bound interval

MIP branching direction

backtracking tolerance

MIP dive strategy

MIP heuristic effort

CPLEX Documentat

Value	Symbol	Meaning
-1	CPX_VARSEL_MININFEAS	Branch on variable with minimum infeasibility
0	CPX_VARSEL_DEFAULT	Automatic: let CPLEX choose variable to branch on; default
1	CPX_VARSEL_MAXINFEAS	Branch on variable with maximum infeasibility
2	CPX_VARSEL_PSEUDO	Branch based on pseudo costs
3	CPX_VARSEL_STRONG	Strong branching
4	CPX_VARSEL_PSEUDOREDUCED	Branch based on pseudo reduced costs

BATE	1	frequency
MIP	hellristic	treduency
1.171	Heulistic	II equelicy:

Value	Meaning	
-1	None	
0	Automatic: let CPLEX choose; default	
Any positive integer	Apply the periodic heuristic at this frequency	

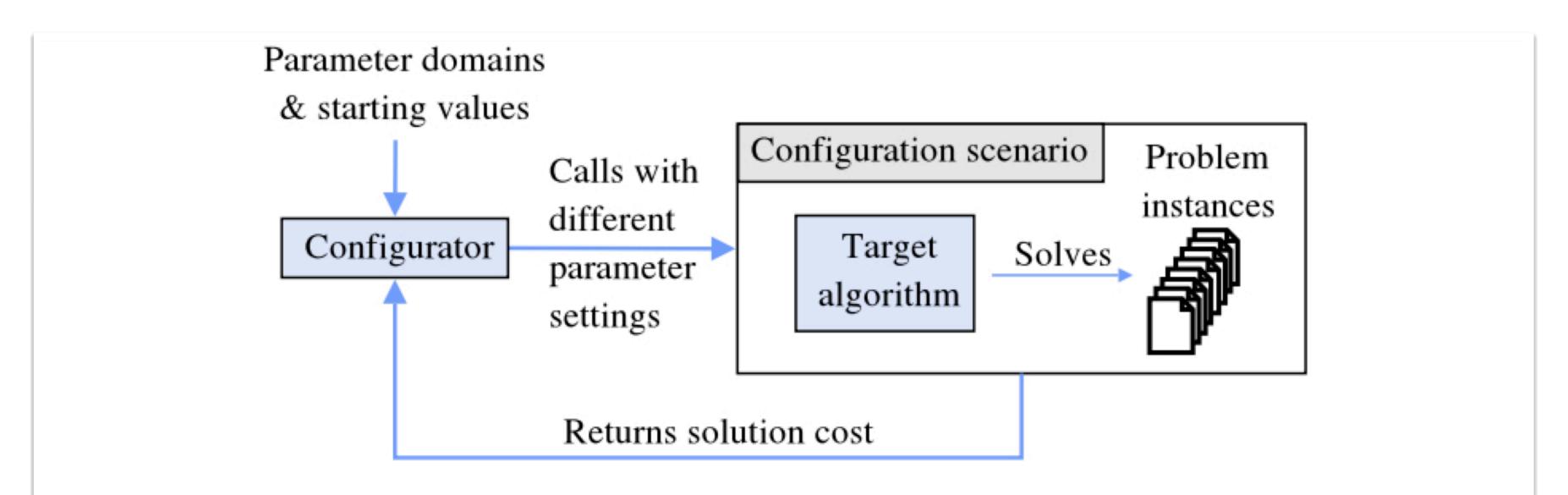


Fig. 1. A configuration procedure (short: configurator) executes the target algorithm with specified parameter settings on one or more problem instances, observes algorithm performance, and uses this information to decide which subsequent target algorithm runs to perform. A configuration scenario includes the target algorithm to be configured and a collection of instances.

Hutter, Frank, Holger H. Hoos, and Kevin Leyton-Brown. "Automated configuration of mixed integer programming solvers." CPAIOR, 2010.

See IJCAI-20 Tutorial: https://www.automl.org/tutorial ac ijcai20/

Automated Algorithm Configuration

- ParamILS [Hutter et al., JAIR 2009], SMAC [Hutter et al., LION 2011]
- Key Idea: search over parameter configurations
 - Stochastic Local Search or Bayesian Optimization
- Great for algorithms with many parameters
 - 2-52x speedups for CPLEX on some problem distributions [Hutter et al., CPAIOR 2010]

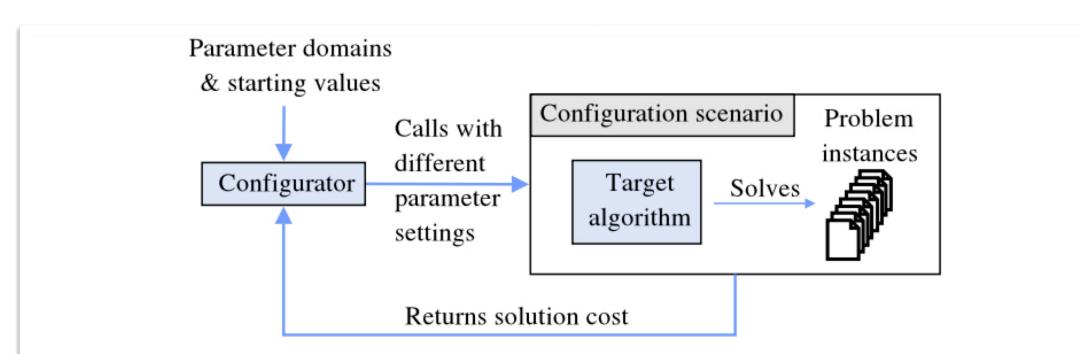


Fig. 1. A configuration procedure (short: configurator) executes the target algorithm with specified parameter settings on one or more problem instances, observes algorithm performance, and uses this information to decide which subsequent target algorithm runs to perform. A configuration scenario includes the target algorithm to be configured and a collection of instances.

Limitations

- Operates at the instance-level, not the algorithm iteration-level
- Assumes human-designed parameter space is rich enough

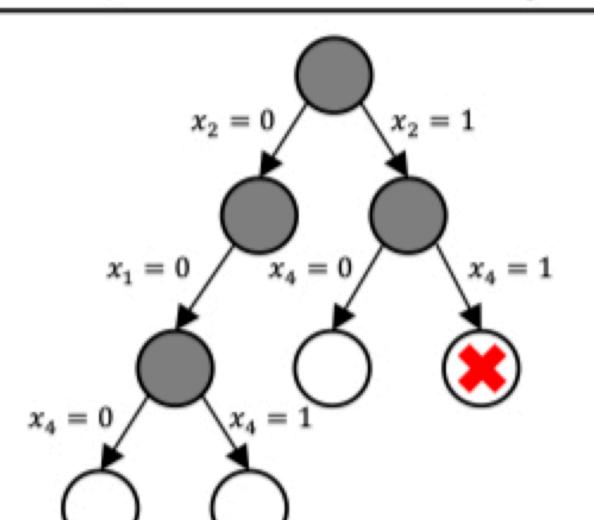
Learning in Exact Solvers

Algorithm: LP-based Branch-and-Bound

```
Input: a MIP min\{c^Tx \mid Ax \leq b, x \in \mathbb{R}^n, x_j \in \mathbb{Z} \ \forall j \in I\}
```

Output: an optimal solution $x^*, z^* := c^T x^*$

- Initialize: Queue of sub-problems (nodes) $\mathcal{L} := \{N_0\}$, Best value $z^* := \infty$, Best solution $x^* := \emptyset$
- 2 Terminate? If $\mathcal{L} = \emptyset$, return x^*
- 3 Select Node [what selection rule?]: Choose a node N_i to process from \mathcal{L}
- 4 Evaluate & Prune: Solve the LP relaxation of N_i and prune node if applicable.
- 5 Add Cuts [which cuts to add?]: new constraints that tighten the formulation.
- 6 Run Heuristics [which heuristics to run?]: try to find a better solution.
- 7 Select Branching Variable [what selection rule?]: Choose a variable that has fractional value in the LP solution of N_i . Create two new subproblems N_{i1} and N_{i2} . Go to line 2.



Learning in Exact Solvers

Algorithm: LP-based Branch-and-Bound

```
Input: a MIP min\{c^Tx \mid Ax \leq b, x \in \mathbb{R}^n, x_j \in \mathbb{Z} \ \forall j \in I\}
```

- **Output:** an optimal solution $x^*, z^* := c^T x^*$
- Initialize: Queue of sub-problems (nodes) $\mathcal{L} := \{N_0\}$, Best value $z^* := \infty$, Best solution $x^* := \emptyset$
- 2 Terminate? If $\mathcal{L} = \emptyset$, return x^*
- 3 Select Node [what selection rule?]: Choose a node N_i to process from \mathcal{L}
- 4 Evaluate & Prune: Solve the LP relaxation of N_i and prune node if applicable.
- 5 Add Cuts [which cuts to add?]: new constraints that tighten the formulation.
- 6 Run Heuristics [which heuristics to run?]: try to find a better solution.
- 7 Select Branching Variable [what selection rule?]: Choose a variable that has fractional value in the LP solution of N_i . Create two new subproblems N_{i1} and N_{i2} . Go to line 2.

Task	Issue	Current Approach
Select Branching Variable	what selection rule?	single hand-designed ranking metric
Add Cuts	which cuts to add?	hand-designed ranking formula
Run Heuristics Select Node	which heuristics to run? what selection rule?	run each every k nodes (fixed parameter k) best-first

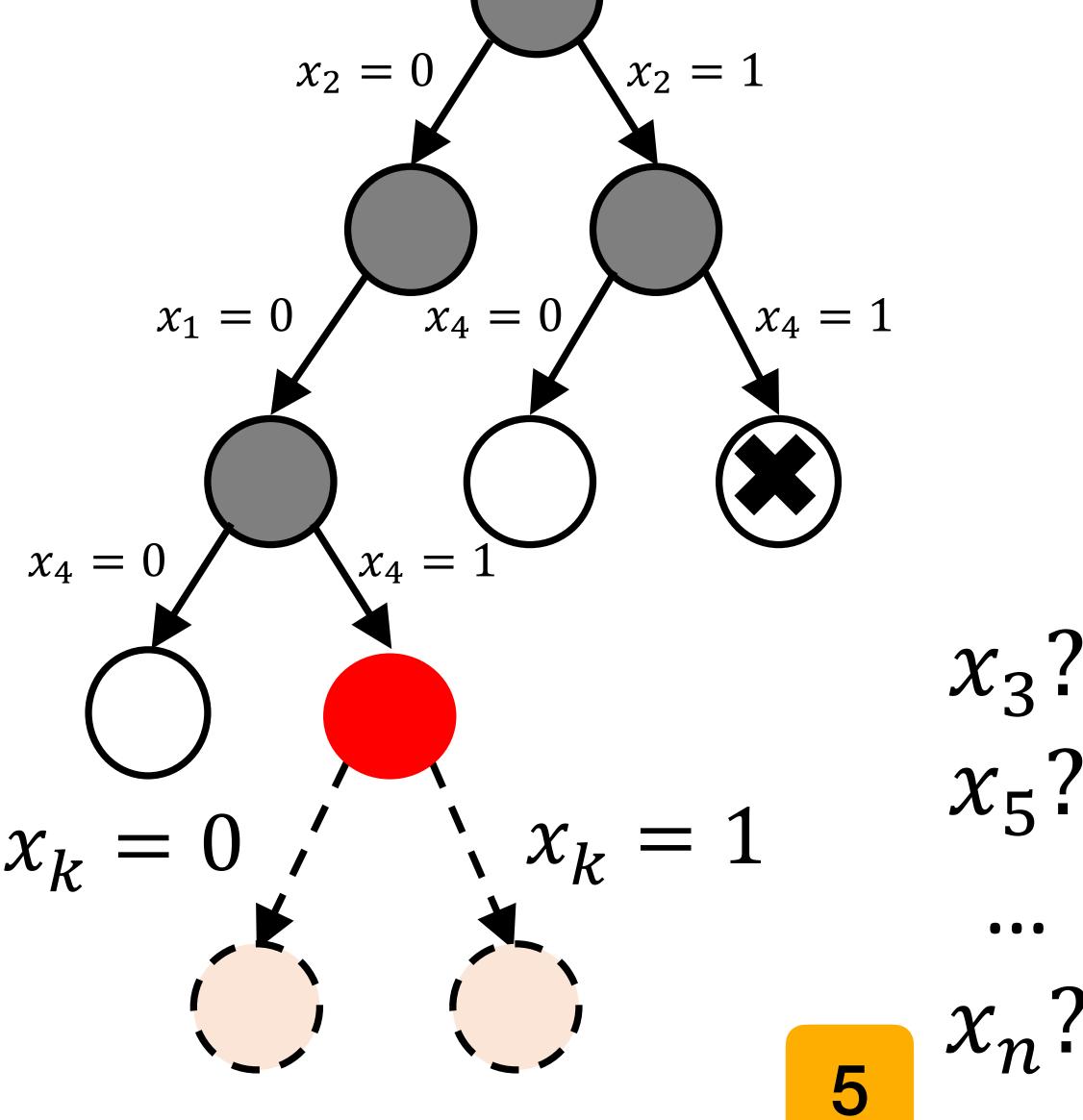
The Branching Problem

A key step of Branch-and-Bound

Ideally, select variables that lead to small sub-tree ↔ many infeasible nodes



Strong Branching (SB) achieves that, but is extremely costly



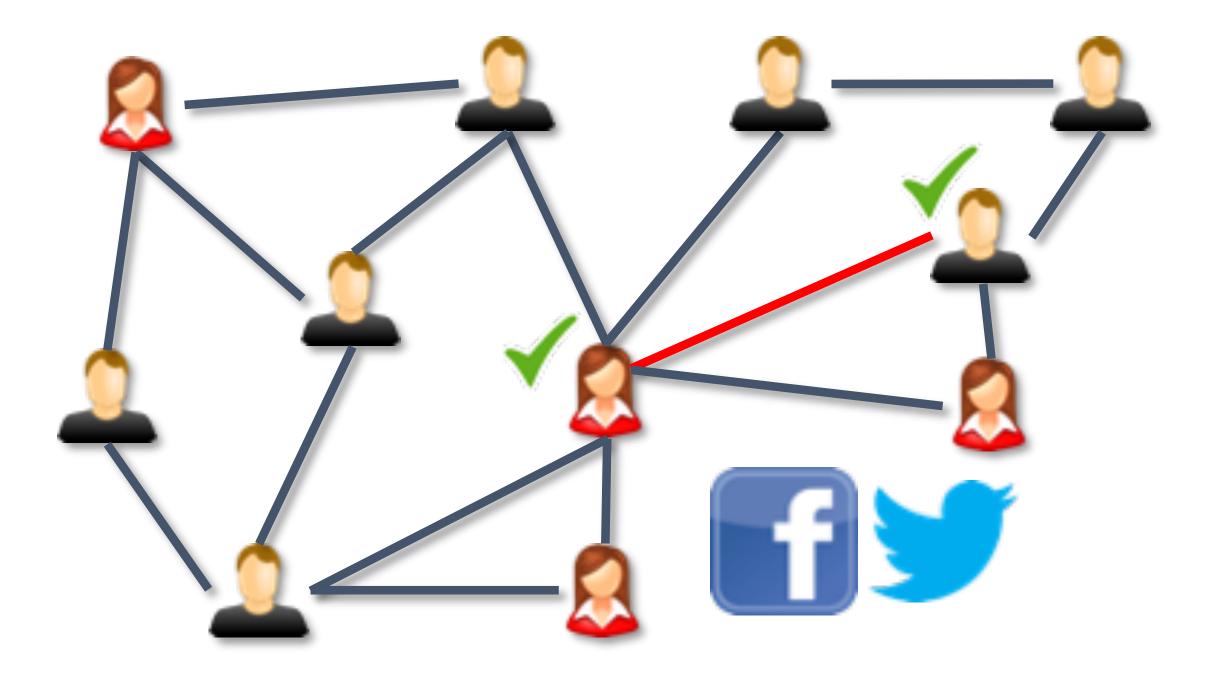
Greedy Graph Optimization

Minimum Vertex Cover

Find smallest vertex subset such that each edge is covered

2-Approximation:

Greedily add vertices of edge with max degree sum



Greedy Graph Optimization

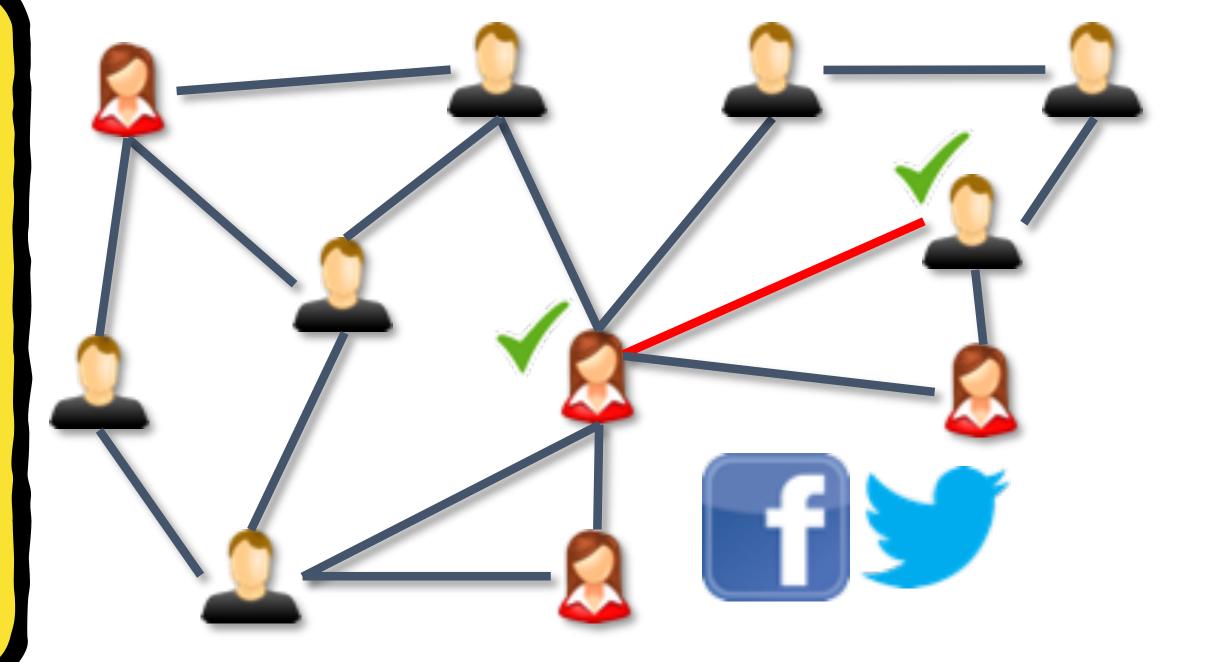
Minimum Vertex Cover

Find smallest vertex subset such that each edge is covered

Learning Greedy Graph Heuristics [Dai*, Khalil*, Zhang, Dilkina, Song, 2017]

Given: graph problem, family of graphs

Learn: a scoring function to guide a greedy algorithm

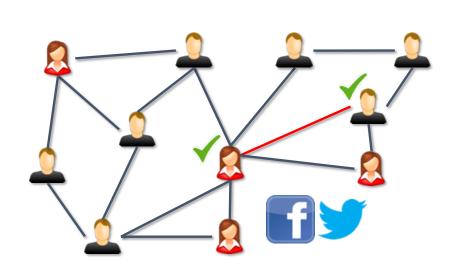


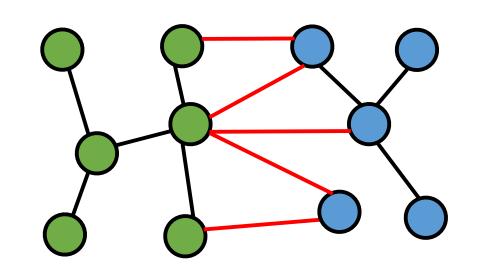
Learning Greedy Heuristics

Given: graph problem, family of graphs

Learn: a scoring function to guide a greedy algorithm

Problem	Minimum Vertex Cover	Maximum Cut	Traveling Salesman Problem
Domain	Social network snapshots	Spin glass models	Package delivery
Greedy operation	Insert nodes into cover	Insert nodes into subset	Insert nodes into sub-tour





Reinforcement Learning

Greedy Algorithm Reinforcement Learning

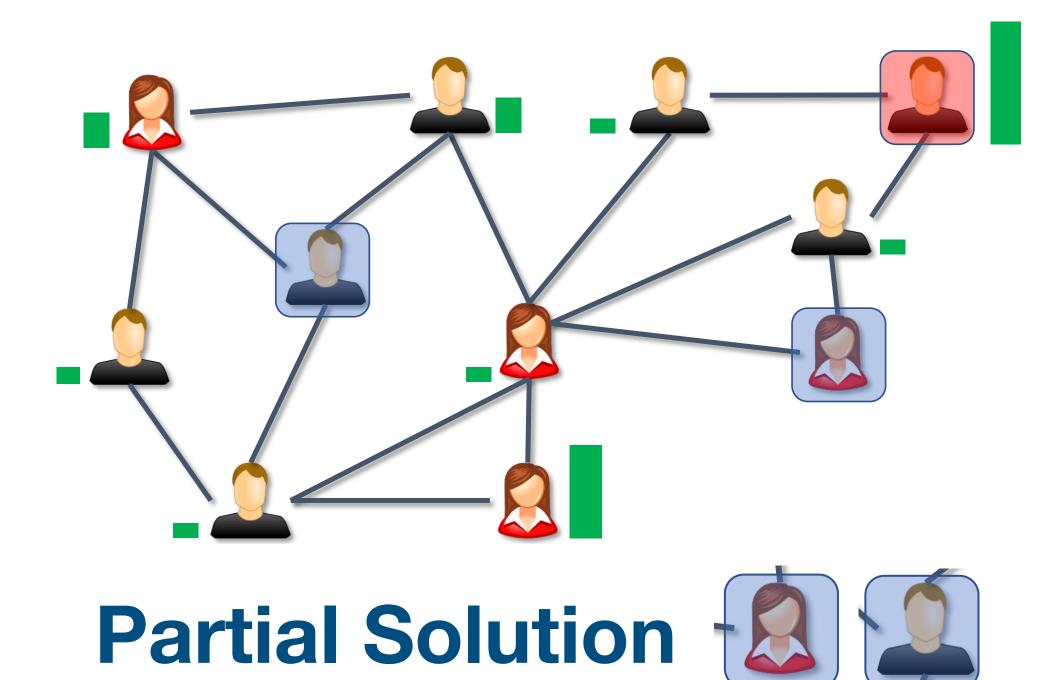
Partial solution ≡ State

Scoring function \equiv Q-function

Select best node ≡ Greedy Policy

Repeat until all edges are covered:

- 1. Compute node scores
- 2. Select best node w.r.t. score
- 3. Add best node to partial sol.



Combinatorial Optimization & Reasoning with Graph Neural Networks

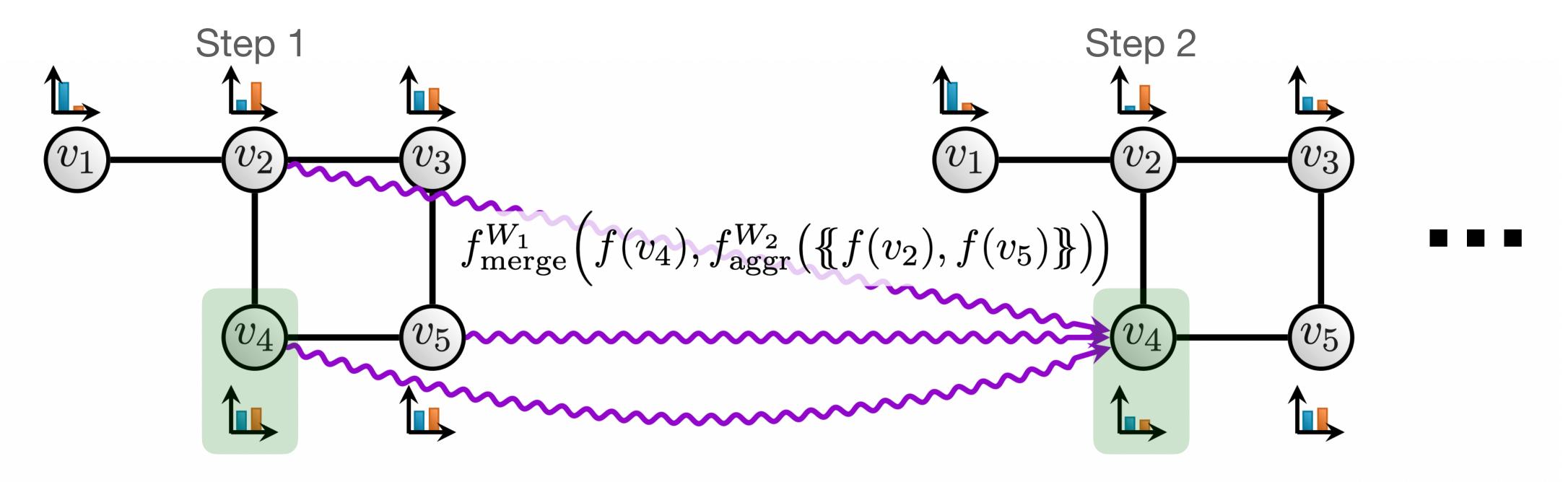


Figure 3: Illustration of the neighborhood aggregation step of a GNN around node ν

Combinatorial Optimization & Reasoning Graph Neural Networks

GNN for Comb. Opt.

- Invariant to node permutations
- ► Model parameters (W_1, W_2) are shared -> applies to graphs of arbitrary size
- Expressive local/global features are learned through non-linear layers

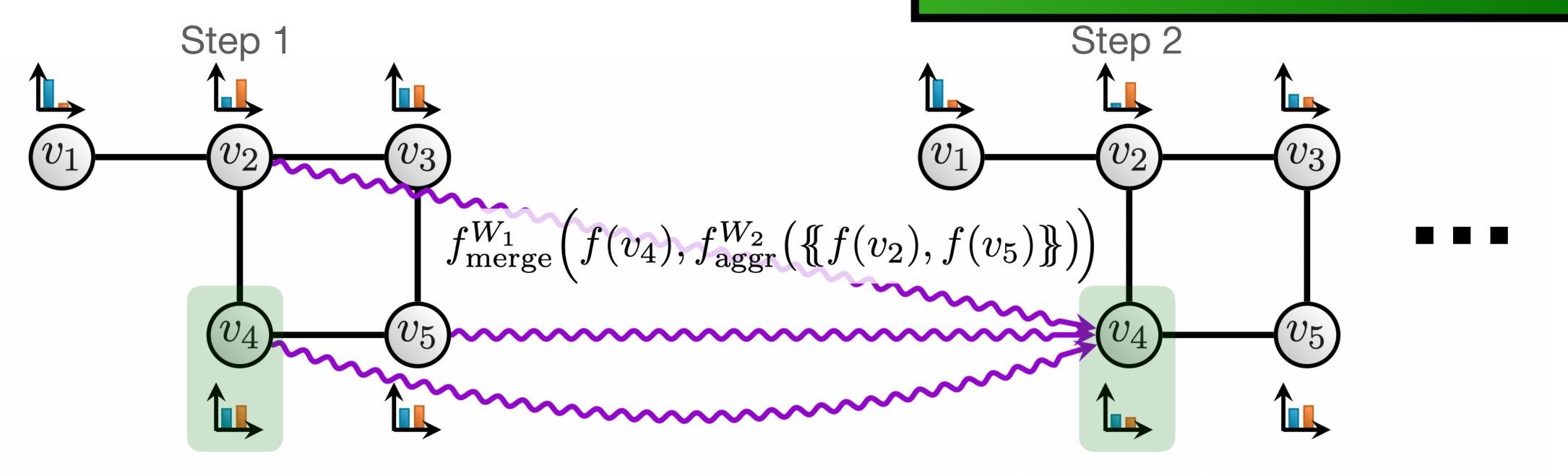
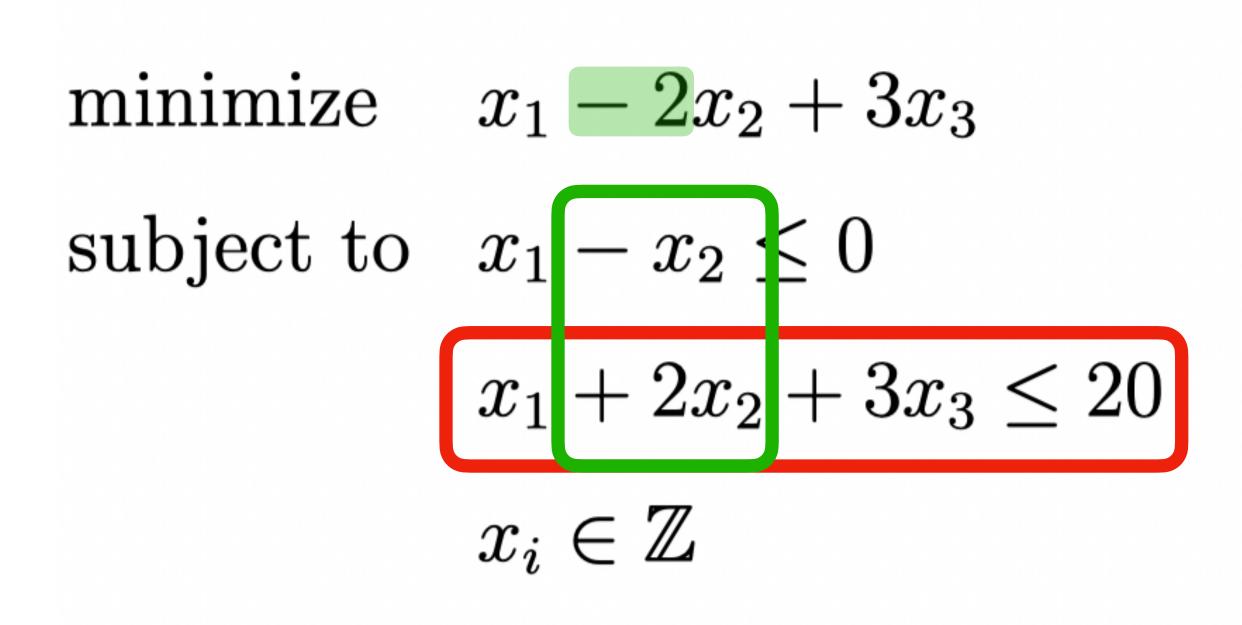
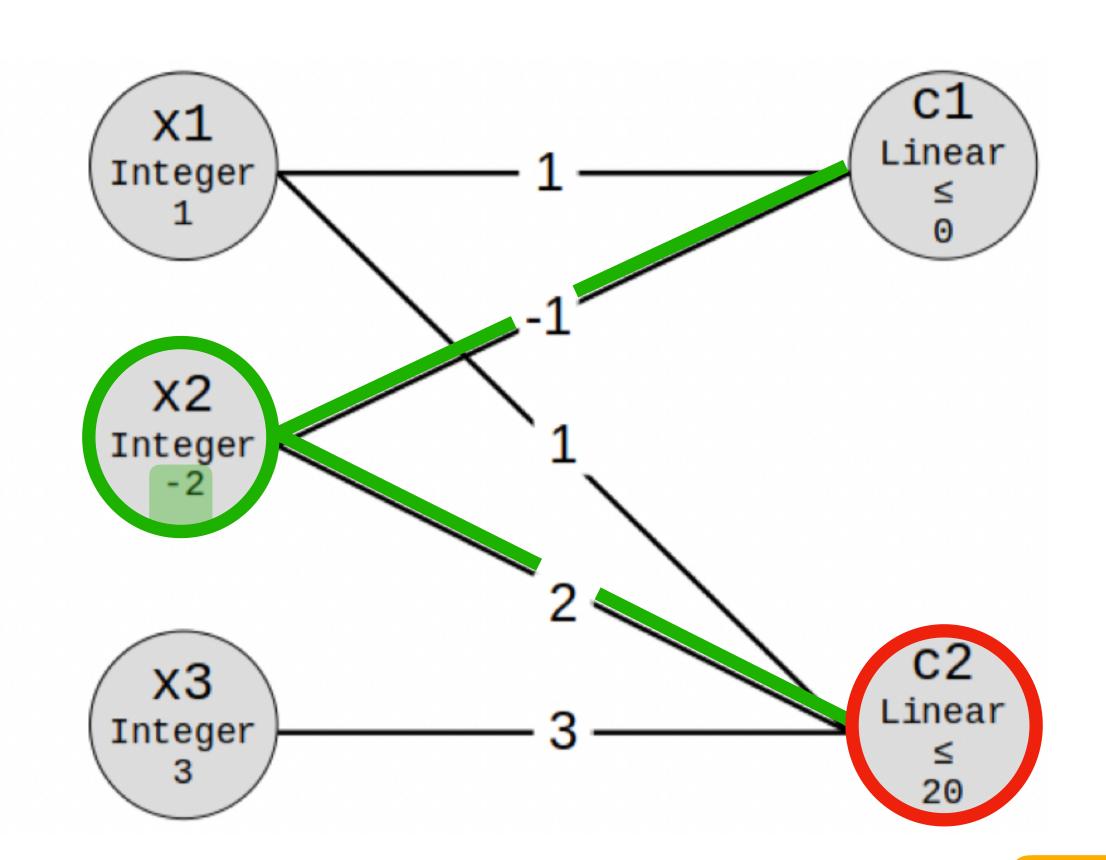


Figure 3: Illustration of the neighborhood aggregation step of a GNN around node ν

Graphs from Integer Programs

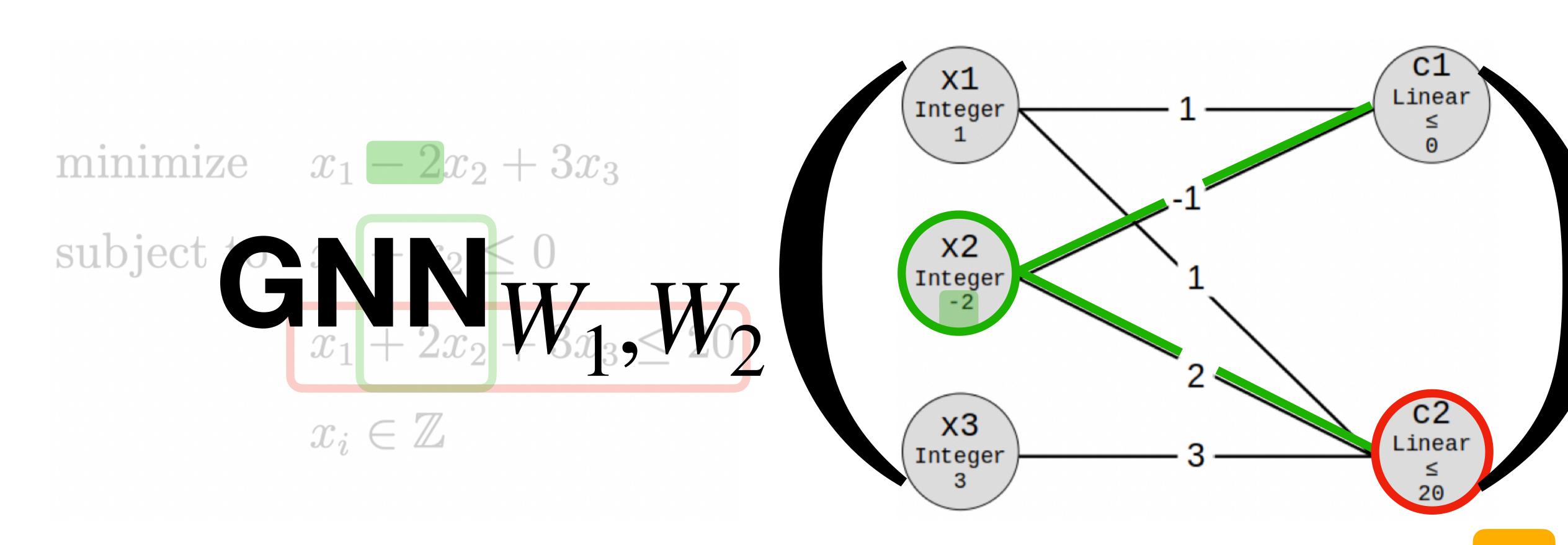
... or Constraint Programs, or SAT formulas, etc.





Graphs from Integer Programs

... or Constraint Programs, or SAT formulas, etc.



Training dataset of TSP instances GNN "fit" to training instances (original graph) \mathbf{GNN}_{W_1,W_2} 10 am 12 pm 8 am 4 pm GNN_{W_1,W_2} (constraint graph) Algorithm Feasible Solution **Optimization Formulation** Problem Instance (Unseen test instance) Tree search Mixed Integer $\min \sum_{i=1}^n \sum_{j \neq i, j=1}^n w_{ij} x_{ij}$ Programming (MIP) subject to $\sum x_{ij} = 1$ $j \in [n],$ $i \in [n],$ $\sum_{i \in Q} \sum_{j \neq i, j \in Q} x_{ij} \ge 1$ $\forall Q \subsetneq [n], |Q| \geq 2.$

Local or Large Neighborhood search