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Forest Harvesting
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Goal: Harvest subset of parcels 
to maximize revenue; pay cost 
for harvesting adjacent parcels

maximize∑
i∈V

rixi − ∑
(i,j)∈E

cijyij

subject to xi + xj − yij ≤ 1

x ∈ {0,1}n, y ∈ {0,1}m G(V, E)

i
j
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Energy Systems

Kidney Exchange

Airline Scheduling Conservation Planning Disaster Response

Ridesharing

College Admissions

Cancer Therapeutics

Auction Design Data Center Management Political Districting

Scientific Discovery> 50% of INFORMS Edelman Award 
winners use Discrete Optimization 

 → Billions ($) in savings/profit

George Nemhauser, Plenary at EURO INFORMS, 2013
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Paradigm Design Rationale
Exhaustive Search Tight formulations 

Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees

Heuristics Intuition exploiting problem structure 
Empirical trial-and-error

How do you tailor the 
algorithm to YOUR 

instances?

Problem-Specific Bounding 
functions or search rules 

Make explicit assumptions on input 
distribution and redesign algo.

Analyze algorithm behavior on your 
inputs; look for patterns to exploit 

Customization via…

ANSWER: 

Manual intellectual/

experimental effort required
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Automatically tailor algorithms 
to a family of instances

Memory

CPU
…

?
…

Data Center Resource Management Forest Harvesting….
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From Integer Programming, 2014. 1
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Empirical algorithmics
How do we evaluate and compare algorithms?
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Hutter, Frank, Holger H. Hoos, and Kevin Leyton-Brown. "Automated configuration of mixed integer programming solvers." CPAIOR, 2010.

3



Towards Tailored Algorithms

Automated Algorithm Configuration 
• ParamILS [Hutter et al., JAIR 2009], SMAC [Hutter et 

al., LION 2011]

• Key Idea: search over parameter configurations
• Stochastic Local Search or Bayesian Optimization

• Great for algorithms with many parameters

• 2-52x speedups for CPLEX on some problem 

distributions [Hutter et al., CPAIOR 2010]

18

Limitations 
• Operates at the instance-level, not the algorithm iteration-level
• Assumes human-designed parameter space is rich enough

See IJCAI-20 Tutorial: https://www.automl.org/tutorial_ac_ijcai20/

3
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The Branching Problem

Ideally, select variables that lead to small 
sub-tree ↔ many infeasible nodes

21

A key step of Branch-and-Bound
!" = 0 !" = 1

!& = 0 !& = 1!' = 0

!& = 0 !& = 1

!(?
!*?
…
!+?

!, = 0 !, = 1Strong Branching (SB) achieves that, 
but is extremely costly

5
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Minimum Vertex Cover  
Find smallest vertex subset such that each edge is covered

2-Approximation: 
Greedily add vertices of edge 
with max degree sum

Learning Greedy Graph Heuristics  
[Dai*, Khalil*, Zhang, Dilkina, Song, 2017] 

Given: graph problem, family of 
graphs 

Learn: a scoring function to 
guide a greedy algorithm

6



Learning Greedy Heuristics
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Learning Greedy Algorithms

Given a graph optimization problem P and a distribu-
tion D over problem instances, can we learn better greedy
heuristics that generalize to unseen instances from D?

Problem Minimum Vertex Cover Maximum Cut Traveling Salesman Problem

Domain Social network snapshots Spin glass models Package delivery

Greedy operation Insert nodes into cover Insert nodes into subset Insert nodes into sub-tour

Elias B. Khalil Towards Tighter Integration of ML and DO March 12, 2018 33 / 53

Given: graph problem, family of graphs 
Learn: a scoring function to guide a greedy algorithm

6



Reinforcement Learning
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Repeat until all edges are covered: 
1. Compute node scores  
2. Select best node w.r.t. score 
3. Add best node to partial sol.

Partial Solution 

Scoring function         Q-function≡
Select best node         Greedy Policy≡

Partial solution           State≡
Greedy Algorithm Reinforcement Learning

6
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Combinatorial  
Optimization & Reasoning with  
Graph Neural Networks

25 Figure from our full-length survey at: https://arxiv.org/abs/2102.09544 

Step 1 Step 2

GNN for Comb. Opt.
‣ Invariant to node permutations


‣ Model parameters ( ) are shared 
—> applies to graphs of arbitrary size 

‣ Expressive local/global features are 
learned through non-linear layers

W1, W2

…

7

https://arxiv.org/abs/2102.09544


Graphs from Integer Programs
… or Constraint Programs, or SAT formulas, etc.
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GNNW1,W2( )
Graphs from Integer Programs
… or Constraint Programs, or SAT formulas, etc.
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Optimization Formulation

!" = 0 !" = 1

!& = 0!' = 0

!& = 0 !& = 1

!& = 1

Local or Large Neighborhood search

Pierre Selim, 2-opt procedure, distributed under a CC BY-SA 3.0 license.

Mixed Integer 
Programming (MIP)

Problem Instance Algorithm

28

…
(Unseen test instance)

Training dataset of TSP instances

Tree search

)(GNNW1,W2

)(GNNW1,W2 {

GNN “fit” to training instances

Feasible Solution

OR

(original graph) 

(constraint graph) 

7


