
Elias B. Khalil — 13/09/21

Course Overview
MIE1666: Machine Learning for Mathematical Optimization

Machine Learning for

Combinatorial Optimization

——COMPETITION 2021——

Did I forget to hit
record? Please

remind me!

Humans learn to design algorithms.

Humans learn to design algorithms.

Can algorithms “learn” to
design algorithms?

Humans learn to design algorithms.

Can algorithms “learn” to
design algorithms?

Machine Learning

Humans learn to design algorithms.

Can algorithms “learn” to
design algorithms?

Machine Learning

Discrete Optimization

Data Center Resource Management

3 Photo from: https://www.reit.com/what-reit/reit-sectors/data-center-reits

https://www.reit.com/what-reit/reit-sectors/data-center-reits

Data Center Resource Management

3

Services
Memory

CPU

…

Photo from: https://www.reit.com/what-reit/reit-sectors/data-center-reits

https://www.reit.com/what-reit/reit-sectors/data-center-reits

Data Center Resource Management

3

Services
Memory

CPU

…

Machines …

Photo from: https://www.reit.com/what-reit/reit-sectors/data-center-reits

https://www.reit.com/what-reit/reit-sectors/data-center-reits

Data Center Resource Management

3

Services
Memory

CPU

…

Machines …
?

Photo from: https://www.reit.com/what-reit/reit-sectors/data-center-reits

https://www.reit.com/what-reit/reit-sectors/data-center-reits

4

Services
Memory

CPU

…

Machines …
?

S

M

4

Services
Memory

CPU

…

Machines …
?

S

M

ym = 1 if machine is usedm
xs,m = 1 if service runs ons m

4

x ∈ {0,1}S×M, y ∈ {0,1}M

Services
Memory

CPU

…

Machines …
?

S

M

ym = 1 if machine is usedm
xs,m = 1 if service runs ons m

4

minimize
M

∑
m=1

ym

x ∈ {0,1}S×M, y ∈ {0,1}M

Services
Memory

CPU

…

Machines …
?

S

M

ym = 1 if machine is usedm
xs,m = 1 if service runs ons m

4

minimize
M

∑
m=1

ym

x ∈ {0,1}S×M, y ∈ {0,1}M

Services
Memory

CPU

…

Machines …
?

S

M

Constraints:

ym = 1 if machine is usedm
xs,m = 1 if service runs ons m

4

minimize
M

∑
m=1

ym

M

∑
m=1

xs,m = 1 ∀s

x ∈ {0,1}S×M, y ∈ {0,1}M

Each service on one machine only

Services
Memory

CPU

…

Machines …
?

S

M

Constraints:

ym = 1 if machine is usedm
xs,m = 1 if service runs ons m

4

minimize
M

∑
m=1

ym

M

∑
m=1

xs,m = 1 ∀s

x ∈ {0,1}S×M, y ∈ {0,1}M

ym ≥ xs,m ∀s, m

Each service on one machine only

Machine is “ON” if a job is assigned to it

Services
Memory

CPU

…

Machines …
?

S

M

Constraints:

ym = 1 if machine is usedm
xs,m = 1 if service runs ons m

4

minimize
M

∑
m=1

ym

M

∑
m=1

xs,m = 1 ∀s

x ∈ {0,1}S×M, y ∈ {0,1}M

S

∑
s=1

mem(s) ⋅ xs,m ≤ cap-mem(m) ∀m

ym ≥ xs,m ∀s, m

Each service on one machine only

Machine is “ON” if a job is assigned to it

Memory capacity

Services
Memory

CPU

…

Machines …
?

S

M

Constraints:

ym = 1 if machine is usedm
xs,m = 1 if service runs ons m

4

minimize
M

∑
m=1

ym

M

∑
m=1

xs,m = 1 ∀s

x ∈ {0,1}S×M, y ∈ {0,1}M

S

∑
s=1

mem(s) ⋅ xs,m ≤ cap-mem(m) ∀m

S

∑
s=1

cpu(s) ⋅ xs,m ≤ cap-cpu(m) ∀mym ≥ xs,m ∀s, m

Each service on one machine only

Machine is “ON” if a job is assigned to it

Memory capacity

Processor capacity

Services
Memory

CPU

…

Machines …
?

S

M

Constraints:

ym = 1 if machine is usedm
xs,m = 1 if service runs ons m

Forest Harvesting

5

Forest Harvesting

5

Forest Harvesting

5

G(V, E)

Forest Harvesting

5

G(V, E)

Forest Harvesting

5

Goal: Harvest subset of parcels
to maximize revenue; pay cost
for harvesting adjacent parcels

G(V, E)

Forest Harvesting

5

Goal: Harvest subset of parcels
to maximize revenue; pay cost
for harvesting adjacent parcels

maximize∑
i∈V

rixi − ∑
(i,j)∈E

cijyij

subject to xi + xj − yij ≤ 1

x ∈ {0,1}n, y ∈ {0,1}m G(V, E)

i
j

Kidney ExchangeAuction Design Data Center Management Political Districting

Energy Systems

Kidney Exchange

Ridesharing Cancer Therapeutics

Auction Design Data Center Management Political Districting

Scientific Discovery

Energy Systems

Kidney Exchange

Airline Scheduling Conservation Planning Disaster Response

Ridesharing

College Admissions

Cancer Therapeutics

Auction Design Data Center Management Political Districting

Scientific Discovery

Energy Systems

Kidney Exchange

Airline Scheduling Conservation Planning Disaster Response

Ridesharing

College Admissions

Cancer Therapeutics

Auction Design Data Center Management Political Districting

Scientific Discovery> 50% of INFORMS Edelman Award
winners use Discrete Optimization

 → Billions ($) in savings/profit

George Nemhauser, Plenary at EURO INFORMS, 2013

Data Center Resource Management

7

Data Center Resource Management

7

Memory

CPU
…

?
…

4 PM

Data Center Resource Management

7

Memory

CPU
…

?
…

Memory

CPU
…

…
?

…

4 PM 5 PM

Data Center Resource Management

7

Memory

CPU
…

?
…

Memory

CPU
…

…
?

…

Memory

CPU
…

?
…

4 PM 5 PM

6 PM

Data Center Resource Management

7

Memory

CPU
…

?
…

Memory

CPU
…

…
?

…

Memory

CPU
…

?
…

…

4 PM 5 PM

6 PM

Tackling NP-Hard Problems

8

Paradigm Design Rationale

Tackling NP-Hard Problems

8

Paradigm Design Rationale
Exhaustive Search Tight formulations

Powerful Branch-and-Bound solvers

Tackling NP-Hard Problems

8

Paradigm Design Rationale
Exhaustive Search Tight formulations

Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees

Tackling NP-Hard Problems

8

Paradigm Design Rationale
Exhaustive Search Tight formulations

Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees

Heuristics Intuition exploiting problem structure
Empirical trial-and-error

Tackling NP-Hard Problems

8

Paradigm Design Rationale
Exhaustive Search Tight formulations

Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees

Heuristics Intuition exploiting problem structure
Empirical trial-and-error

Tackling NP-Hard Problems

8

Paradigm Design Rationale
Exhaustive Search Tight formulations

Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees

Heuristics Intuition exploiting problem structure
Empirical trial-and-error

How do you tailor the
algorithm to YOUR

instances?

Tackling NP-Hard Problems

8

Paradigm Design Rationale
Exhaustive Search Tight formulations

Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees

Heuristics Intuition exploiting problem structure
Empirical trial-and-error

How do you tailor the
algorithm to YOUR

instances?

Customization via…

Tackling NP-Hard Problems

8

Paradigm Design Rationale
Exhaustive Search Tight formulations

Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees

Heuristics Intuition exploiting problem structure
Empirical trial-and-error

How do you tailor the
algorithm to YOUR

instances?

Problem-Specific Bounding
functions or search rules

Customization via…

Tackling NP-Hard Problems

8

Paradigm Design Rationale
Exhaustive Search Tight formulations

Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees

Heuristics Intuition exploiting problem structure
Empirical trial-and-error

How do you tailor the
algorithm to YOUR

instances?

Problem-Specific Bounding
functions or search rules

Make explicit assumptions on input
distribution and redesign algo.

Customization via…

Tackling NP-Hard Problems

8

Paradigm Design Rationale
Exhaustive Search Tight formulations

Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees

Heuristics Intuition exploiting problem structure
Empirical trial-and-error

How do you tailor the
algorithm to YOUR

instances?

Problem-Specific Bounding
functions or search rules

Make explicit assumptions on input
distribution and redesign algo.

Analyze algorithm behavior on your
inputs; look for patterns to exploit

Customization via…

Tackling NP-Hard Problems

8

Paradigm Design Rationale
Exhaustive Search Tight formulations

Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees

Heuristics Intuition exploiting problem structure
Empirical trial-and-error

How do you tailor the
algorithm to YOUR

instances?

Problem-Specific Bounding
functions or search rules

Make explicit assumptions on input
distribution and redesign algo.

Analyze algorithm behavior on your
inputs; look for patterns to exploit

Customization via…

ANSWER:

Manual intellectual/

experimental effort required

Opportunity

9

Automatically tailor algorithms
to a family of instances

Memory

CPU
…

?
…

Data Center Resource Management Forest Harvesting….

Warm-up: Learning in Gradient Descent

10

Source: Ke Li, http://bair.berkeley.edu/blog/2017/09/12/learning-to-optimize-with-rl
Li, Ke, and Jitendra Malik. "Learning to optimize." arXiv:1606.01885, 2016 and ICLR, 2017

http://bair.berkeley.edu/blog/2017/09/12/learning-to-optimize-with-rl

Warm-up: Learning in Gradient Descent

10

Source: Ke Li, http://bair.berkeley.edu/blog/2017/09/12/learning-to-optimize-with-rl
Li, Ke, and Jitendra Malik. "Learning to optimize." arXiv:1606.01885, 2016 and ICLR, 2017

http://bair.berkeley.edu/blog/2017/09/12/learning-to-optimize-with-rl

Data-Driven Algorithm Design

11

automatically discovers
novel search strategies

Learned Heuristic Classical Heuristic

Find smallest
vertex subset
such that each

edge is covered

Minimum
Vertex Cover

Data-Driven Algorithm Design

11

automatically discovers
novel search strategies

Learned Heuristic Classical Heuristic

Find smallest
vertex subset
such that each

edge is covered

Minimum
Vertex Cover

12

From Integer Programming, 2014. 1

Branch & Bound for Integer Optimization

13

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Repeat:

Prune?

1
2
3
4
5
6

LP-based Land & Doig, 1960

1

Branch & Bound for Integer Optimization

13

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

!"
Repeat:

Prune?

1
2
3
4
5
6

1

LP-based Land & Doig, 1960

1

Branch & Bound for Integer Optimization

13

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

!" Solve LP Relaxation
→ Lower Bound on OPT

Repeat:

Prune?

1
2
3
4
5
6

2

[0,1]n
LP-based Land & Doig, 1960

1

Branch & Bound for Integer Optimization

13

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

!" Solve LP Relaxation
→ Lower Bound on OPT

Repeat:

Prune?

1
2
3
4
5
6

3

[0,1]n

worse than best solution?
Prune!

LP-based Land & Doig, 1960

1

Branch & Bound for Integer Optimization

13

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

!" Add Cuts:
Tightening Constraints

Repeat:

Prune?

1
2
3
4
5
6

4

LP-based Land & Doig, 1960

1

Branch & Bound for Integer Optimization

13

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

!" Heuristic A
Heuristic B
Heuristic C

Feasible solution?

Repeat:

Prune?

1
2
3
4
5
6
5

LP-based

Update Best Solution

Land & Doig, 1960

1

Branch & Bound for Integer Optimization

13

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Repeat:
!" #$?

#&?
…
#'?

#(= 0 #(= 1
Prune?

1
2
3
4
5
66

LP-based Land & Doig, 1960

1

Branch & Bound for Integer Optimization

13

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Repeat:
!"

#$

!% !$

#$ = 0 #$ = 1

Prune?

1
2
3
4
5
66

LP-based Land & Doig, 1960

1

Branch & Bound for Integer Optimization

13

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Repeat:

!" !#

$# = 0 $# = 1

Prune?

1
2
3
4
5
6

1

LP-based Land & Doig, 1960

1

Branch & Bound for Integer Optimization

13

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Repeat:

!" = 0 !" = 1

!& = 0!' = 0

!& = 0 !& = 1

!& = 1Prune?

1
2
3
4
5
6

LP-based Land & Doig, 1960

1

Empirical algorithmics
How do we evaluate and compare algorithms?

14
2

Towards Tailored Algorithms

15

CPLEX Documentation3

Towards Tailored Algorithms

16

CPLEX Documentation3

Towards Tailored Algorithms

17

Hutter, Frank, Holger H. Hoos, and Kevin Leyton-Brown. "Automated configuration of mixed integer programming solvers." CPAIOR, 2010.

3

Towards Tailored Algorithms

Automated Algorithm Configuration
• ParamILS [Hutter et al., JAIR 2009], SMAC [Hutter et

al., LION 2011]

• Key Idea: search over parameter configurations
• Stochastic Local Search or Bayesian Optimization

• Great for algorithms with many parameters

• 2-52x speedups for CPLEX on some problem

distributions [Hutter et al., CPAIOR 2010]

18

Limitations
• Operates at the instance-level, not the algorithm iteration-level
• Assumes human-designed parameter space is rich enough

See IJCAI-20 Tutorial: https://www.automl.org/tutorial_ac_ijcai20/

3

Learning in Exact Solvers

19
4

Learning in Exact Solvers

20
4

The Branching Problem

Ideally, select variables that lead to small
sub-tree ↔ many infeasible nodes

21

A key step of Branch-and-Bound
!" = 0 !" = 1

!& = 0 !& = 1!' = 0

!& = 0 !& = 1

!(?
!*?
…
!+?

!, = 0 !, = 1Strong Branching (SB) achieves that,
but is extremely costly

5

Greedy Graph Optimization

22

Minimum Vertex Cover
Find smallest vertex subset such that each edge is covered

2-Approximation:
Greedily add vertices of edge
with max degree sum

6

Greedy Graph Optimization

22

Minimum Vertex Cover
Find smallest vertex subset such that each edge is covered

2-Approximation:
Greedily add vertices of edge
with max degree sum

Learning Greedy Graph Heuristics
[Dai*, Khalil*, Zhang, Dilkina, Song, 2017]

Given: graph problem, family of
graphs

Learn: a scoring function to
guide a greedy algorithm

6

Learning Greedy Heuristics

23

Learning Greedy Algorithms

Given a graph optimization problem P and a distribu-
tion D over problem instances, can we learn better greedy
heuristics that generalize to unseen instances from D?

Problem Minimum Vertex Cover Maximum Cut Traveling Salesman Problem

Domain Social network snapshots Spin glass models Package delivery

Greedy operation Insert nodes into cover Insert nodes into subset Insert nodes into sub-tour

Elias B. Khalil Towards Tighter Integration of ML and DO March 12, 2018 33 / 53

Given: graph problem, family of graphs
Learn: a scoring function to guide a greedy algorithm

6

Reinforcement Learning

24

Repeat until all edges are covered:
1. Compute node scores
2. Select best node w.r.t. score
3. Add best node to partial sol.

Partial Solution

Scoring function Q-function≡
Select best node Greedy Policy≡

Partial solution State≡
Greedy Algorithm Reinforcement Learning

6

Combinatorial
Optimization & Reasoning with
Graph Neural Networks

25 Figure from our full-length survey at: https://arxiv.org/abs/2102.09544

Step 1 Step 2

…

7

https://arxiv.org/abs/2102.09544

Combinatorial
Optimization & Reasoning with
Graph Neural Networks

25 Figure from our full-length survey at: https://arxiv.org/abs/2102.09544

Step 1 Step 2

GNN for Comb. Opt.
‣ Invariant to node permutations

‣ Model parameters () are shared
—> applies to graphs of arbitrary size

‣ Expressive local/global features are
learned through non-linear layers

W1, W2

…

7

https://arxiv.org/abs/2102.09544

Graphs from Integer Programs
… or Constraint Programs, or SAT formulas, etc.

26
7

27

GNNW1,W2()
Graphs from Integer Programs
… or Constraint Programs, or SAT formulas, etc.

7

Optimization Formulation

!" = 0 !" = 1

!& = 0!' = 0

!& = 0 !& = 1

!& = 1

Local or Large Neighborhood search

Pierre Selim, 2-opt procedure, distributed under a CC BY-SA 3.0 license.

Mixed Integer
Programming (MIP)

Problem Instance Algorithm

28

…
(Unseen test instance)

Training dataset of TSP instances

Tree search

)(GNNW1,W2

)(GNNW1,W2 {

GNN “fit” to training instances

Feasible Solution

OR

(original graph)

(constraint graph)

7

